Logo
version: 2025.1+git.1190566d
  • About
  • Documentation
    • Introduction
    • Installation
    • Tutorial
    • User’s Guide
    • Examples
    • FAQ
    • Theoretical Background
    • Term Overview
  • Development
  • Gallery

Connections

  • News
  • Downloads
  • Source Code
  • Mailing list
  • Bug/issue tracking
  • The Paper
  • Docs: latest release
SfePy
  • Documentation
  • Examples
  • Examples
  • navier_stokes
  • navier_stokes/stokes_slip_bc.py
  • View page source

navier_stokes/stokes_slip_bc.py¶

Description

Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven by a moving wall and a small diffusion for stabilization.

This example demonstrates the use of no-penetration and edge direction boundary conditions together with Navier or slip boundary conditions. Alternatively the no-penetration boundary conditions can be applied in a weak sense using the penalty term dw_non_penetration_p.

Find \ul{u}, p such that:

\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,

\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,

where \nu is the fluid viscosity, \beta is the slip coefficient, \mu is the (small) numerical diffusion coefficient, \Gamma_1 is the top wall that moves with the given driving velocity \ul{u}_d and \Gamma_2 are the remaining walls. The Navier conditions are in effect on both \Gamma_1, \Gamma_2 and are expressed by the corresponding integrals in the equations above.

The no-penetration boundary conditions are applied on \Gamma_1, \Gamma_2, except the vertices of the block edges, where the edge direction boundary conditions are applied.

The penalty term formulation is given by the following equations.

Find \ul{u}, p such that:

\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
  (\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,

\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,

where \epsilon is the penalty coefficient (sufficiently large). The no-penetration boundary conditions are applied on \Gamma_1, \Gamma_2.

Optionally, Dirichlet boundary conditions can be applied on the inlet in the both cases, see below.

For large meshes use the 'ls_i' linear solver - PETSc + petsc4py are needed in that case.

Several parameters can be set using the --define option of sfepy-run, see define() and the examples below.

Examples¶

Specify the inlet velocity and a finer mesh:

sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Use the penalty term formulation and einsum-based terms with the default (numpy) backend:

sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order:

sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution:

sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
../_images/navier_stokes-stokes_slip_bc1.png

source code

r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.

This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.

Find :math:`\ul{u}`, :math:`p` such that:

.. math::
    \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
    - \int_{\Omega} p\ \nabla \cdot \ul{v}
    + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
    + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
    = 0
    \;, \quad \forall \ul{v} \;,

    \int_{\Omega} \mu \nabla q \cdot \nabla p
    + \int_{\Omega} q\ \nabla \cdot \ul{u}
    = 0
    \;, \quad \forall q \;,

where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.

The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.

The penalty term formulation is given by the following equations.

Find :math:`\ul{u}`, :math:`p` such that:

.. math::
    \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
    - \int_{\Omega} p\ \nabla \cdot \ul{v}
    + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
    + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
    + \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
      (\ul{n} \cdot \ul{u})
    = 0
    \;, \quad \forall \ul{v} \;,

    \int_{\Omega} \mu \nabla q \cdot \nabla p
    + \int_{\Omega} q\ \nabla \cdot \ul{u}
    = 0
    \;, \quad \forall q \;,

where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.

Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.

For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.

Several parameters can be set using the ``--define`` option of ``sfepy-run``,
see :func:`define()` and the examples below.

Examples
--------

Specify the inlet velocity and a finer mesh::

  sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
  sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::

  sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
  sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::

  sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
  sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk

Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::

  sfepy-run sfepy/examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
  sfepy-view -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
import os
from functools import partial
import numpy as nm

from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions

def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
           ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
           backend='numpy', optimize='optimal', verbosity=0, output_dir='.',
           save_lcbc_vecs=False):
    """
    Parameters
    ----------
    dims : tuple
        The block domain dimensions.
    shape : tuple
        The mesh resolution: increase to improve accuracy.
    u_order : int
        The velocity field approximation order.
    refine : int
        The refinement level.
    ls : 'ls_d' or 'ls_i'
        The pre-configured linear solver name.
    u_inlet : float, optional
        The x-component of the inlet velocity.
    mode : 'lcbc' or 'penalty'
        The alternative formulations.
    term_mode : 'original' or 'einsum'
        The switch to use either the original or new experimental einsum-based
        terms.
    backend : str
        The einsum mode backend.
    optimize : str
        The einsum mode optimization (backend dependent).
    verbosity : 0, 1, 2, 3
        The verbosity level of einsum-based terms.
    output_dir : str
        The output directory.
    save_lcbc_vecs : bool
        If True, save the no_penetration and edge_direction LCBC vectors.
    """
    output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
           .format(dims, shape, u_order, refine, u_inlet))
    output('linear solver: {}'.format(ls))
    output('mode: {}, term_mode: {}'.format(mode, term_mode))
    if term_mode == 'einsum':
        output('backend: {}, optimize: {}, verbosity: {}'
               .format(backend, optimize, verbosity))

    assert_(mode in {'lcbc', 'penalty'})
    assert_(term_mode in {'original', 'einsum'})
    if u_order > 1:
        assert_(mode == 'penalty', msg='set mode=penalty to use u_order > 1!')
    dims = nm.array(dims, dtype=nm.float64)
    shape = nm.array(shape, dtype=nm.int32)

    def mesh_hook(mesh, mode):
        """
        Generate the block mesh.
        """
        if mode == 'read':
            mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block',
                                  verbose=False)
            return mesh

        elif mode == 'write':
            pass

    filename_mesh = UserMeshIO(mesh_hook)

    regions = define_box_regions(3, 0.5 * dims)
    regions.update({
        'Omega' : 'all',
        'Edges_v' : ("""(r.Near *v r.Bottom) +v
                        (r.Bottom *v r.Far) +v
                        (r.Far *v r.Top) +v
                        (r.Top *v r.Near)""", 'edge'),
        'Gamma1_f' : ('copy r.Top', 'face'),
        'Gamma2_f' : ('r.Near +v r.Bottom +v r.Far', 'face'),
        'Gamma_f' : ('r.Gamma1_f +v r.Gamma2_f', 'face'),
        'Gamma_v' : ('r.Gamma_f -v r.Edges_v', 'face'),
        'Inlet_f' : ('r.Left -v r.Gamma_f', 'face'),
    })

    fields = {
        'velocity' : ('real', 3, 'Omega', u_order),
        'pressure' : ('real', 1, 'Omega', 1),
    }

    def get_u_d(ts, coors, region=None, **kwargs):
        """
        Given stator velocity.
        """
        out = nm.zeros_like(coors)
        out[:] = [1.0, 1.0, 0.0]

        return out

    functions = {
        'get_u_d' : (get_u_d,),
    }

    variables = {
        'u' : ('unknown field', 'velocity', 0),
        'v' : ('test field',    'velocity', 'u'),
        'u_d' : ('parameter field', 'velocity',
                 {'setter' : 'get_u_d'}),
        'p' : ('unknown field', 'pressure', 1),
        'q' : ('test field',    'pressure', 'p'),
    }

    materials = {
        'm' : ({
            'nu' : 1e-3,
            'beta' : 1e-2,
            'mu' : 1e-10,
        },),
    }

    ebcs = {
    }
    if u_inlet is not None:
        ebcs['inlet'] = ('Inlet_f', {'u.0' : u_inlet, 'u.[1, 2]' : 0.0})

    indir = partial(os.path.join, output_dir)

    if mode == 'lcbc':
        lcbcs = {
            'walls' : ('Gamma_v', {'u.all' : None}, None, 'no_penetration',
                       indir('normals_Gamma.vtk') if save_lcbc_vecs else None),
            'edges' : ('Edges_v', [(-0.5, 1.5)], {'u.all' : None}, None,
                       'edge_direction',
                       indir('edges_Edges.vtk') if save_lcbc_vecs else None),
        }

        if term_mode == 'original':
            equations = {
                'balance' :
                """dw_div_grad.5.Omega(m.nu, v, u)
                 - dw_stokes.5.Omega(v, p)
                 + dw_dot.5.Gamma1_f(m.beta, v, u)
                 + dw_dot.5.Gamma2_f(m.beta, v, u)
                 =
                 + dw_dot.5.Gamma1_f(m.beta, v, u_d)""",
                'incompressibility' :
                """dw_laplace.5.Omega(m.mu, q, p)
                 + dw_stokes.5.Omega(u, q) = 0""",
            }

        else:
            equations = {
                'balance' :
                """de_div_grad.5.Omega(m.nu, v, u)
                 - de_stokes.5.Omega(v, p)
                 + de_dot.5.Gamma1_f(m.beta, v, u)
                 + de_dot.5.Gamma2_f(m.beta, v, u)
                 =
                 + de_dot.5.Gamma1_f(m.beta, v, u_d)""",
                'incompressibility' :
                """de_laplace.5.Omega(m.mu, q, p)
                 + de_stokes.5.Omega(u, q) = 0""",
            }

    else:
        materials['m'][0]['np_eps'] = 1e3

        if term_mode == 'original':
            equations = {
                'balance' :
                """dw_div_grad.5.Omega(m.nu, v, u)
                 - dw_stokes.5.Omega(v, p)
                 + dw_dot.5.Gamma1_f(m.beta, v, u)
                 + dw_dot.5.Gamma2_f(m.beta, v, u)
                 + dw_non_penetration_p.5.Gamma1_f(m.np_eps, v, u)
                 + dw_non_penetration_p.5.Gamma2_f(m.np_eps, v, u)
                 =
                 + dw_dot.5.Gamma1_f(m.beta, v, u_d)""",
                'incompressibility' :
                """dw_laplace.5.Omega(m.mu, q, p)
                 + dw_stokes.5.Omega(u, q) = 0""",
            }

        else:
            equations = {
                'balance' :
                """de_div_grad.5.Omega(m.nu, v, u)
                 - de_stokes.5.Omega(v, p)
                 + de_dot.5.Gamma1_f(m.beta, v, u)
                 + de_dot.5.Gamma2_f(m.beta, v, u)
                 + de_non_penetration_p.5.Gamma1_f(m.np_eps, v, u)
                 + de_non_penetration_p.5.Gamma2_f(m.np_eps, v, u)
                 =
                 + de_dot.5.Gamma1_f(m.beta, v, u_d)""",
                'incompressibility' :
                """de_laplace.5.Omega(m.mu, q, p)
                 + de_stokes.5.Omega(u, q) = 0""",
            }

    solvers = {
        'ls_d' : ('ls.auto_direct', {}),
        'ls_i' : ('ls.petsc', {
            'method' : 'bcgsl', # ksp_type
            'precond' : 'bjacobi', # pc_type
            'sub_precond' : 'ilu', # sub_pc_type
            'eps_a' : 0.0, # abstol
            'eps_r' : 1e-12, # rtol
            'eps_d' : 1e10, # Divergence tolerance.
            'i_max' : 200, # maxits
        }),
        'newton' : ('nls.newton', {
            'i_max' : 1,
            'eps_a'      : 1e-10,
        }),
    }

    options = {
        'nls' : 'newton',
        'ls' : ls,
        'eterm': {
            'verbosity' : verbosity,
            'backend_args' : {
                'backend' : backend,
                'optimize' : optimize,
                'layout' : None,
            },
        },
        'refinement_level' : refine,
        'output_dir' : output_dir,
    }

    return locals()
Previous Next

© Copyright 2020, Robert Cimrman and SfePy developers.

Built with Sphinx using a theme provided by Read the Docs.