sfepy.terms.terms_fibres module

class sfepy.terms.terms_fibres.FibresActiveTLTerm(*args, **kwargs)[source]

Hyperelastic active fibres term. Effective stress S_{ij} = A f_{\rm max} \exp{\left\{-(\frac{\epsilon -
\varepsilon_{\rm opt}}{s})^2\right\}} d_i d_j, where \epsilon = E_{ij} d_i d_j is the Green strain \ull{E} projected to the fibre direction \ul{d}.

Definition:

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

Call signature:

dw_tl_fib_a

(material_1, material_2, material_3, material_4, material_5, virtual, state)

Arguments:
  • material_1 : f_{\rm max}

  • material_2 : \varepsilon_{\rm opt}

  • material_3 : s

  • material_4 : \ul{d}

  • material_5 : A

  • virtual : \ul{v}

  • state : \ul{u}

arg_shapes = {'material_1': '1, 1', 'material_2': '1, 1', 'material_3': '1, 1', 'material_4': 'D, 1', 'material_5': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}
arg_types = ('material_1', 'material_2', 'material_3', 'material_4', 'material_5', 'virtual', 'state')
family_data_names = ['green_strain']
get_eval_shape(mat1, mat2, mat3, mat4, mat5, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(mat1, mat2, mat3, mat4, mat5, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
name = 'dw_tl_fib_a'
static stress_function(out, pars, green_strain, fibre_data=None)[source]
static tan_mod_function(out, pars, green_strain, fibre_data=None)[source]
class sfepy.terms.terms_fibres.FibresExponentialTLTerm(*args, **kwargs)[source]

Hyperelastic fibres term with an exponential response. Effective stress S_{ij} = \max\left(0, \sigma \left[ \exp{\left\{k (\epsilon -
\epsilon_0)\right\}} - 1 \right]\right) d_i d_j, where \epsilon =
E_{ij} d_i d_j is the Green strain \ull{E} projected to the fibre direction \ul{d}.

Definition:

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

Call signature:

dw_tl_fib_e

(material_1, material_2, material_3, material_4, virtual, state)

Arguments:
  • material_1 : \sigma

  • material_3 : k

  • material_3 : \epsilon_{0}

  • material_4 : \ul{d}

  • virtual : \ul{v}

  • state : \ul{u}

arg_shapes = {'material_1': '1, 1', 'material_2': '1, 1', 'material_3': '1, 1', 'material_4': 'D, 1', 'state': 'D', 'virtual': ('D', 'state')}
arg_types = ('material_1', 'material_2', 'material_3', 'material_4', 'virtual', 'state')
family_data_names = ['green_strain']
get_eval_shape(mat1, mat2, mat3, mat4, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(mat1, mat2, mat3, mat4, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
name = 'dw_tl_fib_e'
static stress_function(out, pars, green_strain, fibre_data=None)[source]
static tan_mod_function(out, pars, green_strain, fibre_data=None)[source]
sfepy.terms.terms_fibres.compute_fibre_strain(green_strain, omega)[source]

Compute the Green strain projected to the fibre direction.

sfepy.terms.terms_fibres.create_omega(fdir)[source]

Create the fibre direction tensor \omega_{ij} = d_i d_j.