sfepy.terms.terms_dot module¶
- class sfepy.terms.terms_dot.BCNewtonTerm(name, arg_str, integral, region, **kwargs)[source]¶
Newton boundary condition term.
- Definition:
- Call signature:
dw_bc_newton
(material_1, material_2, virtual, state)
- Arguments:
material_1 :
material_2 :
virtual :
state :
- arg_shapes = {'material_1': '1, 1', 'material_2': '1, 1', 'state': 1, 'virtual': (1, 'state')}¶
- arg_shapes_dict = None¶
- arg_types = ('material_1', 'material_2', 'virtual', 'state')¶
- get_fargs(alpha, p_outer, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'facet'¶
- mode = 'weak'¶
- name = 'dw_bc_newton'¶
- class sfepy.terms.terms_dot.DotProductTerm(name, arg_str, integral, region, **kwargs)[source]¶
Volume and surface weighted dot product for both scalar and vector fields. If the region is a surface and either virtual or state variable is a vector, the orientation of the normal vectors is outwards to the parent region of the virtual variable. Can be evaluated. Can use derivatives.
- Definition:
- Call signature:
dw_dot
(opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
- Arguments:
material: or (optional)
virtual/parameter_1: or
state/parameter_2: or
- arg_shapes_dict = {'cell': [{'opt_material': '1, 1', 'parameter_1': 1, 'parameter_2': 1, 'state': 1, 'virtual': (1, 'state')}, {'opt_material': None}, {'opt_material': '1, 1', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}, {'opt_material': 'D, D'}, {'opt_material': None}], 'facet': [{'opt_material': '1, 1', 'parameter_1': 1, 'parameter_2': 1, 'state': 1, 'virtual': (1, 'state')}, {'opt_material': None}, {'opt_material': '1, 1', 'state': 'D', 'virtual': (1, None)}, {'opt_material': None}, {'opt_material': '1, 1', 'state': 1, 'virtual': ('D', None)}, {'opt_material': None}, {'opt_material': '1, 1', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}, {'opt_material': 'D, D'}, {'opt_material': None}]}¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
- integration = ('cell', 'facet')¶
- modes = ('weak', 'eval')¶
- name = 'dw_dot'¶
- class sfepy.terms.terms_dot.DotSProductVolumeOperatorWETHTerm(name, arg_str, integral, region, **kwargs)[source]¶
Fading memory volume weighted dot product for scalar fields. This term has the same definition as dw_volume_dot_w_scalar_th, but assumes an exponential approximation of the convolution kernel resulting in much higher efficiency. Can use derivatives.
- Definition:
- Call signature:
dw_volume_dot_w_scalar_eth
(ts, material_0, material_1, virtual, state)
- Arguments:
ts :
TimeStepper
instancematerial_0 :
material_1 : (decay at )
virtual :
state :
- arg_shapes = {'material_0': '1, 1', 'material_1': '1, 1', 'state': 1, 'virtual': (1, 'state')}¶
- arg_types = ('ts', 'material_0', 'material_1', 'virtual', 'state')¶
- static function(out, coef, val_qp, rcmap, ccmap, is_diff)¶
- get_fargs(ts, mat0, mat1, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'dw_volume_dot_w_scalar_eth'¶
- class sfepy.terms.terms_dot.DotSProductVolumeOperatorWTHTerm(name, arg_str, integral, region, **kwargs)[source]¶
Fading memory volume weighted dot product for scalar fields. Can use derivatives.
- Definition:
- Call signature:
dw_volume_dot_w_scalar_th
(ts, material, virtual, state)
- Arguments:
ts :
TimeStepper
instancematerial :
virtual :
state :
- arg_shapes = {'material': '.: N, 1, 1', 'state': 1, 'virtual': (1, 'state')}¶
- arg_types = ('ts', 'material', 'virtual', 'state')¶
- static function(out, coef, val_qp, rcmap, ccmap, is_diff)¶
- name = 'dw_volume_dot_w_scalar_th'¶
- class sfepy.terms.terms_dot.ScalarDotGradIScalarTerm(name, arg_str, integral, region, **kwargs)[source]¶
Dot product of a scalar and the -th component of gradient of a scalar. The index should be given as a ‘special_constant’ material parameter.
- Definition:
- Call signature:
dw_s_dot_grad_i_s
(material, virtual, state)
- Arguments:
material :
virtual :
state :
- arg_shapes = {'material': '.: 1, 1', 'state': 1, 'virtual': (1, 'state')}¶
- arg_types = ('material', 'virtual', 'state')¶
- name = 'dw_s_dot_grad_i_s'¶
- class sfepy.terms.terms_dot.ScalarDotMGradScalarTerm(name, arg_str, integral, region, **kwargs)[source]¶
Volume dot product of a scalar gradient dotted with a material vector with a scalar.
- Definition:
- Call signature:
dw_s_dot_mgrad_s
(material, virtual, state)
(material, state, virtual)
- Arguments 1:
material :
virtual :
state :
- Arguments 2:
material :
state :
virtual :
- arg_shapes = [{'material': 'D, 1', 'state/grad_state': 1, 'state/grad_virtual': 1, 'virtual/grad_state': (1, None), 'virtual/grad_virtual': (1, None)}]¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'))¶
- modes = ('grad_state', 'grad_virtual')¶
- name = 'dw_s_dot_mgrad_s'¶
- class sfepy.terms.terms_dot.VectorDotGradScalarTerm(name, arg_str, integral, region, **kwargs)[source]¶
Volume dot product of a vector and a gradient of scalar. Can be evaluated.
- Definition:
- Call signature:
dw_v_dot_grad_s
(opt_material, virtual, state)
(opt_material, state, virtual)
(opt_material, parameter_v, parameter_s)
- Arguments 1:
material: or (optional)
virtual/parameter_v:
state/parameter_s:
- Arguments 2:
material : or (optional)
state :
virtual :
- arg_shapes = [{'opt_material': '1, 1', 'parameter_s': 1, 'parameter_v': 'D', 'state/s_weak': 'D', 'state/v_weak': 1, 'virtual/s_weak': (1, None), 'virtual/v_weak': ('D', None)}, {'opt_material': 'D, D'}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'state', 'virtual'), ('opt_material', 'parameter_v', 'parameter_s'))¶
- modes = ('v_weak', 's_weak', 'eval')¶
- name = 'dw_v_dot_grad_s'¶
- class sfepy.terms.terms_dot.VectorDotScalarTerm(name, arg_str, integral, region, **kwargs)[source]¶
Volume dot product of a vector and a scalar. Can be evaluated.
- Definition:
- Call signature:
dw_vm_dot_s
(material, virtual, state)
(material, state, virtual)
(material, parameter_v, parameter_s)
- Arguments 1:
material :
virtual/parameter_v:
state/parameter_s:
- Arguments 2:
material :
state :
virtual :
- arg_shapes = [{'material': 'D, 1', 'parameter_s': 1, 'parameter_v': 'D', 'state/s_weak': 'D', 'state/v_weak': 1, 'virtual/s_weak': (1, None), 'virtual/v_weak': ('D', None)}]¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_v', 'parameter_s'))¶
- modes = ('v_weak', 's_weak', 'eval')¶
- name = 'dw_vm_dot_s'¶