sfepy.homogenization.recovery module¶
- sfepy.homogenization.recovery.combine_scalar_grad(corrs, grad, vn, ii, shift_coors=None)[source]¶
or
- sfepy.homogenization.recovery.compute_mac_stress_part(pb, integral, region, material, vu, mac_strain)[source]¶
- sfepy.homogenization.recovery.compute_micro_u(corrs, strain, vu, dim, out=None)[source]¶
Micro displacements.
- sfepy.homogenization.recovery.compute_p_corr_time(corrs_rs, dstrains, corrs_pressure, pressures, vdp, dim, iel, ts)[source]¶
- sfepy.homogenization.recovery.compute_p_from_macro(p_grad, coor, iel, centre=None, extdim=0)[source]¶
Macro-induced pressure.
- sfepy.homogenization.recovery.compute_stress_strain_u(pb, integral, region, material, vu, data)[source]¶
- sfepy.homogenization.recovery.compute_u_corr_steady(corrs_rs, strain, vu, dim, iel)[source]¶
Notes
iel = element number
- sfepy.homogenization.recovery.compute_u_corr_time(corrs_rs, dstrains, corrs_pressure, pressures, vu, dim, iel, ts)[source]¶
- sfepy.homogenization.recovery.compute_u_from_macro(strain, coor, iel, centre=None)[source]¶
Macro-induced displacements.
- sfepy.homogenization.recovery.convolve_field_scalar(fvars, pvars, iel, ts)[source]¶
Notes
t is given by step
f: fvars scalar field variables, defined in a micro domain, have shape [step][fmf dims]
p: pvars scalar point variables, a scalar in a point of macro-domain, FMField style have shape [n_step][var dims]
- sfepy.homogenization.recovery.convolve_field_sym_tensor(fvars, pvars, var_name, dim, iel, ts)[source]¶
Notes
t is given by step
f: fvars field variables, defined in a micro domain, have shape [step][fmf dims]
p: pvars sym. tensor point variables, a scalar in a point of macro-domain, FMField style, have shape [dim, dim][var_name][n_step][var dims]
- sfepy.homogenization.recovery.get_output_suffix(iel, ts, naming_scheme, format, output_format)[source]¶
- sfepy.homogenization.recovery.recover_bones(problem, micro_problem, region, eps0, ts, strain, dstrains, p_grad, pressures, corrs_permeability, corrs_rs, corrs_time_rs, corrs_pressure, corrs_time_pressure, var_names, naming_scheme='step_iel')[source]¶
Notes
note that
is in corrs_pressure -> from time correctors only ‘u’, ‘dp’ are needed.
- sfepy.homogenization.recovery.recover_micro_hook(micro_filename, region, macro, eps0, region_mode='el_centers', eval_mode='constant', eval_vars=None, corrs=None, recovery_file_tag='', define_args=None, output_dir=None, verbose=False)[source]¶
- Parameters:
- micro_filenamestr
The definition file of the microproblem.
- regionRegion or array
The macroscopic region to be recovered. If array, the centers of microscopic RVEs (Representative Volume Element) are assumed to be stored in it. If Region, the RVE centers are computed according to region_mode, see below.
- macrodict of arrays or tuples
Either macroscopic values (if array) or the tuple (mode, eval_var, nodal_values) is expected. The tuple is used to evaluate the macroscopic values in given points of RVEs (see ‘eval_mode`). mode can be ‘val’, ‘grad’, ‘div’, or ‘cauchy_strain’.
- eps0float
The size of the microstructures (RVE).
- region_mode{‘el_centers’, ‘tiled’}
If ‘el_centers’, the RVE centers are identical to the element centers of the macroscopic FE mesh. If ‘tiled’, the recovered region is tiled by rescaled RVEs.
- eval_mode{‘constant’, ‘continuous’}
If ‘constant’, the macroscopic fields are evaluated only at the RVE centers. If ‘continuous’, the fields are evaluated at all points of the RVE mesh.
- eval_varslist of variables
The list of variables use to evaluate the macroscopic fields.
- corrsdict of CorrSolution
The correctors for recovery.
- recovery_file_tagstr
The tag which is appended to the output file.
- define_argsdict
The define arguments for the microscopic problem.
- output_dirstr
The output directory.
- verbosebool
The verbose terminal output.