sfepy.solvers.ts_dg_solvers module

Explicit time stepping solvers for use with DG FEM

class sfepy.solvers.ts_dg_solvers.DGMultiStageTSS(conf, nls=None, context=None, **kwargs)[source]

Explicit time stepping solver with multistage solve_step method

Kind: ‘ts.multistaged’

For common configuration parameters, see Solver.

Specific configuration parameters:

Parameters:
t0float (default: 0.0)

The initial time.

t1float (default: 1.0)

The final time.

dtfloat

The time step. Used if n_step is not given.

n_stepint (default: 10)

The number of time steps. Has precedence over dt.

quasistaticbool (default: False)

If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time.

limitersdictionary

Limiters for DGFields, keys: field name, values: limiter class

name = 'ts.multistaged'
output_step_info(ts)[source]
solve_step(ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None)[source]
solve_step0(nls, vec0)[source]
class sfepy.solvers.ts_dg_solvers.EulerStepSolver(conf, nls=None, context=None, **kwargs)[source]

Simple forward euler method

Kind: ‘ts.euler’

For common configuration parameters, see Solver.

Specific configuration parameters:

Parameters:
name = 'ts.euler'
solve_step(ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None)[source]
class sfepy.solvers.ts_dg_solvers.RK4StepSolver(conf, nls=None, context=None, **kwargs)[source]

Classical 4th order Runge-Kutta method, implemetantions is based on [1]

[1]

Hesthaven, J. S., & Warburton, T. (2008). Nodal Discontinuous Galerkin Methods. Journal of Physics A: Mathematical and Theoretical (Vol. 54). New York, NY: Springer New York. http://doi.org/10.1007/978-0-387-72067-8, p. 63

Kind: ‘ts.runge_kutta_4’

For common configuration parameters, see Solver.

Specific configuration parameters:

Parameters:
name = 'ts.runge_kutta_4'
solve_step(ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None)[source]
stage_updates = (<function RK4StepSolver.<lambda>>, <function RK4StepSolver.<lambda>>, <function RK4StepSolver.<lambda>>, <function RK4StepSolver.<lambda>>)
class sfepy.solvers.ts_dg_solvers.TVDRK3StepSolver(conf, nls=None, context=None, **kwargs)[source]

3rd order Total Variation Diminishing Runge-Kutta method based on [1]

\begin{aligned}
     \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t
     \bar{\mathcal{L}}(\mathbf{p}^n),\\
     \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n
     +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t
      \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\
     \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n
     +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t
      \bar{\mathcal{L}}(\mathbf{p}^{(2)}).
\end{aligned}

[1]

Gottlieb, S., & Shu, C.-W. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2

Kind: ‘ts.tvd_runge_kutta_3’

For common configuration parameters, see Solver.

Specific configuration parameters:

Parameters:
name = 'ts.tvd_runge_kutta_3'
solve_step(ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None)[source]