sfepy.solvers.optimize module¶
- class sfepy.solvers.optimize.FMinSteepestDescent(conf, **kwargs)[source]¶
Steepest descent optimization solver.
Kind: ‘opt.fmin_sd’
For common configuration parameters, see
Solver
.Specific configuration parameters:
- Parameters:
- i_maxint (default: 10)
The maximum number of iterations.
- eps_rdfloat (default: 1e-05)
The relative delta of the objective function.
- eps_offloat (default: 0.0001)
The tolerance for the objective function.
- eps_ofgfloat (default: 1e-08)
The tolerance for the objective function gradient.
- normnumpy norm (default: inf)
The norm to be used.
- lsbool (default: True)
If True, use a line-search.
- ls_method{‘backtracking’, ‘full’} (default: ‘backtracking’)
The line-search method.
- ls_onfloat (default: 0.99999)
Start the backtracking line-search by reducing the step, if is larger than ls_on.
- ls00.0 < float < 1.0 (default: 1.0)
The initial step.
- ls_red0.0 < float < 1.0 (default: 0.5)
The step reduction factor in case of correct residual assembling.
- ls_red_warp0.0 < float < 1.0 (default: 0.1)
The step reduction factor in case of failed residual assembling (e.g. the “warp violation” error caused by a negative volume element resulting from too large deformations).
- ls_min0.0 < float < 1.0 (default: 1e-05)
The minimum step reduction factor.
- check0, 1 or 2 (default: 0)
If >= 1, check the tangent matrix using finite differences. If 2, plot the resulting sparsity patterns.
- deltafloat (default: 1e-06)
If check >= 1, the finite difference matrix is taken as .
- outputfunction
If given, use it instead of
output()
function.- yscaleslist of str (default: [‘linear’, ‘log’, ‘log’, ‘linear’])
The list of four convergence log subplot scales.
- logdict or None
If not None, log the convergence according to the configuration in the following form:
{'text' : 'log.txt', 'plot' : 'log.pdf'}
. Each of the dict items can be None.
- name = 'opt.fmin_sd'¶
- class sfepy.solvers.optimize.ScipyFMinSolver(conf, **kwargs)[source]¶
Interface to SciPy optimization solvers scipy.optimize.fmin_*.
Kind: ‘nls.scipy_fmin_like’
For common configuration parameters, see
Solver
.Specific configuration parameters:
- Parameters:
- method{‘fmin’, ‘fmin_bfgs’, ‘fmin_cg’, ‘fmin_cobyla’, ‘fmin_l_bfgs_b’, ‘fmin_ncg’, ‘fmin_powell’, ‘fmin_slsqp’, ‘fmin_tnc’} (default: ‘fmin’)
The actual optimization method to use.
- i_maxint (default: 10)
The maximum number of iterations.
- **
Additional parameters supported by the method.
- name = 'nls.scipy_fmin_like'¶