sfepy.discrete.fem.fields_nodal module¶
Notes¶
Important attributes of continuous (order > 0) Field
and
SurfaceField
instances:
vertex_remap : econn[:, :n_vertex] = vertex_remap[conn]
vertex_remap_i : conn = vertex_remap_i[econn[:, :n_vertex]]
where conn is the mesh vertex connectivity, econn is the region-local field connectivity.
- class sfepy.discrete.fem.fields_nodal.H1DiscontinuousField(name, dtype, shape, region, approx_order=1)[source]¶
The C0 constant-per-cell approximation.
- average_to_vertices(dofs)[source]¶
Average DOFs of the discontinuous field into the field region vertices.
- extend_dofs(dofs, fill_value=None)[source]¶
Extend DOFs to the whole domain using the fill_value, or the smallest value in dofs if fill_value is None.
- family_name = 'volume_H1_lagrange_discontinuous'¶
- class sfepy.discrete.fem.fields_nodal.H1NodalSurfaceField(name, dtype, shape, region, approx_order=1)[source]¶
A field defined on a surface region.
- family_name = 'surface_H1_lagrange'¶
- class sfepy.discrete.fem.fields_nodal.H1NodalVolumeField(name, dtype, shape, region, approx_order=1)[source]¶
Lagrange basis nodal approximation.
- family_name = 'volume_H1_lagrange'¶
- class sfepy.discrete.fem.fields_nodal.H1SEMSurfaceField(name, dtype, shape, region, approx_order=1)[source]¶
- family_name = 'surface_H1_sem'¶
- class sfepy.discrete.fem.fields_nodal.H1SEMVolumeField(name, dtype, shape, region, approx_order=1)[source]¶
Spectral element method approximation.
Uses the Lagrange basis with Legendre-Gauss-Lobatto nodes and quadrature.
- family_name = 'volume_H1_sem'¶
- class sfepy.discrete.fem.fields_nodal.H1SNodalSurfaceField(name, dtype, shape, region, approx_order=1)[source]¶
- family_name = 'surface_H1_serendipity'¶