linear_elasticity/seismic_load.py

Description

The linear elastodynamics of an elastic body loaded by a given base motion.

Find \ul{u} such that:

\int_{\Omega} \rho \ul{v} \pddiff{\ul{u}}{t}
+ \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
= 0
\;, \quad \forall \ul{v} \;, \\
u_1(t) =  10^{-5} \sin(\omega t) \sin(k x_2)
\mbox{ on } \Gamma_\mathrm{Seismic} \;, \\
\omega = c_L k \;,

where c_L is the longitudinal wave propagation speed, k = 2 \pi
/ L,` L is the length of the domain and

D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.

See linear_elasticity/elastodynamic.py example for notes on elastodynamics solvers.

Usage Examples

Run with the default settings (the Newmark method, 2D problem, results stored in output/seismic/):

sfepy-run sfepy/examples/linear_elasticity/seismic_load.py -o tsn

View the resulting displacements on the deforming mesh (10x magnified):

sfepy-view output/seismic/tsn.h5 -2 -f u:wu:f10:p0 1:vw:p0

Use the central difference explicit method with the reciprocal mass matrix algorithm [1] and view the resulting stress waves:

sfepy-run sfepy/examples/linear_elasticity/seismic_load.py  -d "dims=(5e-3, 5e-3), shape=(51, 51), tss_name=tscd, ls_name=lsrmm, mass_beta=0.5, mass_lumping=row_sum, fast_rmm=True, save_times=all" -o tscd

sfepy-view output/seismic/tscd.h5 -2 -f cauchy_stress:wu:f10:p0 1:vw:p0
../_images/linear_elasticity-seismic_load1.png

source code

r"""
The linear elastodynamics of an elastic body loaded by a given base motion.

Find :math:`\ul{u}` such that:

.. math::
    \int_{\Omega} \rho \ul{v} \pddiff{\ul{u}}{t}
    + \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
    = 0
    \;, \quad \forall \ul{v} \;, \\
    u_1(t) =  10^{-5} \sin(\omega t) \sin(k x_2)
    \mbox{ on } \Gamma_\mathrm{Seismic} \;, \\
    \omega = c_L k \;,

where :math:`c_L` is the longitudinal wave propagation speed, :math:`k = 2 \pi
/ L`,` :math:`L` is the length of the domain and

.. math::
    D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
    \lambda \ \delta_{ij} \delta_{kl}
    \;.

See :ref:`linear_elasticity-elastodynamic` example for notes on elastodynamics
solvers.

Usage Examples
--------------

Run with the default settings (the Newmark method, 2D problem, results stored
in ``output/seismic/``)::

  sfepy-run sfepy/examples/linear_elasticity/seismic_load.py -o tsn

View the resulting displacements on the deforming mesh (10x magnified)::

  sfepy-view output/seismic/tsn.h5 -2 -f u:wu:f10:p0 1:vw:p0

Use the central difference explicit method with the reciprocal mass matrix
algorithm [1]_ and view the resulting stress waves::

  sfepy-run sfepy/examples/linear_elasticity/seismic_load.py  -d "dims=(5e-3, 5e-3), shape=(51, 51), tss_name=tscd, ls_name=lsrmm, mass_beta=0.5, mass_lumping=row_sum, fast_rmm=True, save_times=all" -o tscd

  sfepy-view output/seismic/tscd.h5 -2 -f cauchy_stress:wu:f10:p0 1:vw:p0

.. [1] González, J.A., Kolman, R., Cho, S.S., Felippa, C.A., Park, K.C., 2018.
       Inverse mass matrix via the method of localized Lagrange multipliers.
       International Journal for Numerical Methods in Engineering 113, 277–295.
       https://doi.org/10.1002/nme.5613
"""
import numpy as nm

import sfepy.mechanics.matcoefs as mc
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh

def define(
        E=200e9, nu=0.3, rho=7800,
        plane='strain',
        dims=(5e-3, 5e-3),
        shape=(31, 31),
        v0=1.0,
        ct1=1.5,
        dt=None,
        edt_safety=0.2,
        tss_name='tsn',
        tsc_name='tscedl',
        adaptive=False,
        ls_name='lsd',
        mass_beta=0.0,
        mass_lumping='none',
        fast_rmm=False,
        active_only=False,
        save_times=20,
        output_dir='output/seismic',
):
    """
    Parameters
    ----------
    E, nu, rho: material parameters
    plane: plane strain or stress hypothesis
    dims: physical dimensions of the block (L, d, x)
    shape: numbers of mesh vertices along each axis
    v0: initial impact velocity
    ct1: final time in L / "longitudinal wave speed" units
    dt: time step (None means automatic)
    edt_safety: safety factor time step multiplier for explicit schemes,
                if dt is None
    tss_name: time stepping solver name (see "solvers" section)
    tsc_name: time step controller name (see "solvers" section)
    adaptive: use adaptive time step control
    ls_name: linear system solver name (see "solvers" section)
    mass_beta: averaged mass matrix parameter 0 <= beta <= 1
    mass_lumping: mass matrix lumping ('row_sum', 'hrz' or 'none')
    fast_rmm: use zero inertia term with lsrmm
    save_times: number of solutions to save
    output_dir: output directory
    """
    dim = len(dims)

    lam, mu = mc.lame_from_youngpoisson(E, nu, plane=plane)
    # Longitudinal and shear wave propagation speeds.
    cl = nm.sqrt((lam + 2.0 * mu) / rho)
    cs = nm.sqrt(mu / rho)

    # Element size.
    L, d = dims[:2]
    H = L / (nm.max(shape) - 1)

    # Time-stepping parameters.
    if dt is None:
        # For implicit schemes, dt based on the Courant number C0 = dt * cl / H
        # equal to 1.
        dt = H / cl # C0 = 1
        if tss_name in ('tsvv', 'tscd'):
            # For explicit schemes, use a safety margin.
            dt *= edt_safety

    t1 = ct1 * L / cl

    def mesh_hook(mesh, mode):
        """
        Generate the block mesh.
        """
        if mode == 'read':
            mesh = gen_block_mesh(dims, shape, 0.5 * nm.array(dims),
                                  name='user_block', verbose=False)
            return mesh

        elif mode == 'write':
            pass

    def post_process(out, problem, state, extend=False):
        """
        Calculate and output strain and stress for given displacements.
        """
        from sfepy.base.base import Struct

        ev = problem.evaluate
        strain = ev('ev_cauchy_strain.i.Omega(u)', mode='el_avg', verbose=False)
        stress = ev('ev_cauchy_stress.i.Omega(solid.D, u)', mode='el_avg',
                    copy_materials=False, verbose=False)

        out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                      data=strain)
        out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                      data=stress)

        return out

    filename_mesh = UserMeshIO(mesh_hook)

    regions = {
        'Omega' : 'all',
        'Seismic' : ('vertices in (x < 1e-12)', 'facet'),
    }

    # Iron.
    materials = {
        'solid' : ({
            'D': mc.stiffness_from_youngpoisson(dim=dim, young=E, poisson=nu,
                                                plane=plane),
            'rho': rho,
            '.lumping' : mass_lumping,
            '.beta' : mass_beta,
        },),
    }

    fields = {
        'displacement': ('real', 'vector', 'Omega', 1),
    }

    integrals = {
        'i' : 2,
    }

    variables = {
        'u' : ('unknown field', 'displacement', 0),
        'v' : ('test field', 'displacement', 'u'),
    }

    def get_ebcs(ts, coors, mode='u'):
        y = coors[:, 1]
        amplitude = 0.00001
        k = 2 * nm.pi / L
        omega = cl * k
        if mode == 'u':
            val = amplitude * nm.sin(ts.time * omega) * nm.sin(k * y)

        elif mode == 'du':
            val = amplitude * omega * nm.cos(ts.time * omega) * nm.sin(k * y)

        elif mode == 'ddu':
            val = -amplitude * omega**2 * nm.sin(ts.time * omega) * nm.sin(k * y)

        return val

    functions = {
        'get_u' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor),),
        'get_du' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor, mode='du'),),
        'get_ddu' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor, mode='ddu'),),
    }

    ebcs = {
        'Seismic' : ('Seismic', {'u.0' : 'get_u', 'du.0' : 'get_du',
                                 'ddu.0' : 'get_ddu'}),
    }

    ics = {
        'ic' : ('Omega', {'u.all' : 0.0, 'du.all' : 0.0}),
    }

    if (ls_name == 'lsrmm') and fast_rmm:
        # Speed up residual calculation, as M is not used with lsrmm.
        term = 'dw_zero.i.Omega(v, ddu)'

    else:
        term = 'de_mass.i.Omega(solid.rho, solid.lumping, solid.beta, v, ddu)'

    equations = {
        'balance_of_forces' :
        term + '+ dw_lin_elastic.i.Omega(solid.D, v, u) = 0',
    }

    solvers = {
        'lsd' : ('ls.auto_direct', {
            # Reuse the factorized linear system from the first time step.
            'use_presolve' : True,
            # Speed up the above by omitting the matrix digest check used
            # normally for verification that the current matrix corresponds to
            # the factorized matrix stored in the solver instance. Use with
            # care!
            'use_mtx_digest' : False,
        }),
        'lsi' : ('ls.petsc', {
            'method' : 'cg',
            'precond' : 'icc',
            'i_max' : 150,
            'eps_a' : 1e-32,
            'eps_r' : 1e-8,
            'verbose' : 2,
        }),
        'lsrmm' : ('ls.rmm', {
            'rmm_term' : """de_mass.i.Omega(solid.rho, solid.lumping,
                                            solid.beta, v, ddu)""",
            'debug' : False,
        }),
        'newton' : ('nls.newton', {
            'i_max'      : 1,
            'eps_a'      : 1e-6,
            'eps_r'      : 1e-6,
            'ls_on'      : 1e100,
        }),
        'tsvv' : ('ts.velocity_verlet', {
            # Explicit method.
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear'  : True,

            'verbose' : 1,
        }),
        'tscd' : ('ts.central_difference', {
            # Explicit method. Supports ls.rmm.
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear'  : True,

            'verbose' : 1,
        }),
        'tsn' : ('ts.newmark', {
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear'  : True,

            'beta' : 0.25,
            'gamma' : 0.5,

            'verbose' : 1,
        }),
        'tsga' : ('ts.generalized_alpha', {
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear'  : True,

            'rho_inf' : 0.5,
            'alpha_m' : None,
            'alpha_f' : None,
            'beta' : None,
            'gamma' : None,

            'verbose' : 1,
        }),
        'tsb' : ('ts.bathe', {
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear'  : True,

            'verbose' : 1,
        }),
        'tscedb' : ('tsc.ed_basic', {
            'eps_r' : (1e-4, 1e-1),
            'eps_a' : (1e-8, 5e-2),
            'fmin' : 0.3,
            'fmax' : 2.5,
            'fsafety' : 0.85,
        }),
        'tscedl' : ('tsc.ed_linear', {
            'eps_r' : (1e-4, 1e-1),
            'eps_a' : (1e-8, 5e-2),
            'fmin' : 0.3,
            'fmax' : 2.5,
            'fsafety' : 0.85,
            'red_factor' : 0.9,
            'inc_wait' : 10,
            'min_inc_factor' : 1.5,
        }),
    }

    options = {
        'ts' : tss_name,
        'tsc' : tsc_name if adaptive else None,
        'nls' : 'newton',
        'ls' : ls_name,

        'save_times' : save_times,

        'active_only' : active_only,
        'auto_transform_equations' : True,

        'output_format' : 'h5',
        'output_dir' : output_dir,
        'post_process_hook' : 'post_process',
    }

    return locals()