large_deformation/compare_elastic_materials.py

Description

Compare various elastic materials w.r.t. uniaxial tension/compression test.

Requires Matplotlib.

../_images/large_deformation-compare_elastic_materials-pressure_displacement1.png

source code

#!/usr/bin/env python
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.

Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')

import numpy as nm

def define():
    """Define the problem to solve."""
    from sfepy.discrete.fem.meshio import UserMeshIO
    from sfepy.mesh.mesh_generators import gen_block_mesh
    from sfepy.mechanics.matcoefs import stiffness_from_lame

    def mesh_hook(mesh, mode):
        """
        Generate the block mesh.
        """
        if mode == 'read':
            mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
                                  verbose=False)
            return mesh

        elif mode == 'write':
            pass

    filename_mesh = UserMeshIO(mesh_hook)

    options = {
        'nls' : 'newton',
        'ls' : 'ls',
        'ts' : 'ts',
        'save_times' : 'all',
    }

    functions = {
        'linear_tension' : (linear_tension,),
        'linear_compression' : (linear_compression,),
        'empty' : (lambda ts, coor, mode, region, ig: None,),
    }

    fields = {
        'displacement' : ('real', 3, 'Omega', 1),
    }

    # Coefficients are chosen so that the tangent stiffness is the same for all
    # material for zero strains.
    # Young modulus = 10 kPa, Poisson's ratio = 0.3
    materials = {
        'solid' : ({
            'K'  : 8.333, # bulk modulus
            'mu_nh' : 3.846, # shear modulus of neoHookean term
            'mu_mr' : 1.923, # shear modulus of Mooney-Rivlin term
            'kappa' : 1.923, # second modulus of Mooney-Rivlin term
            # elasticity for LE term
            'D' : stiffness_from_lame(dim=3, lam=5.769, mu=3.846),
        },),
        'load' : 'empty',
    }

    variables = {
        'u' : ('unknown field', 'displacement', 0),
        'v' : ('test field', 'displacement', 'u'),
    }

    regions = {
        'Omega' : 'all',
        'Bottom' : ('vertices in (z < 0.1)', 'facet'),
        'Top' : ('vertices in (z > 2.9)', 'facet'),
    }

    ebcs = {
        'fixb' : ('Bottom', {'u.all' : 0.0}),
        'fixt' : ('Top', {'u.[0,1]' : 0.0}),
    }

    integrals = {
        'i' : 1,
        'isurf' : 2,
    }
    equations = {
        'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
                    = dw_surface_ltr.isurf.Top(load.val, v)""",
        'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
                         + dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
                         = dw_surface_ltr.isurf.Top(load.val, v)""",
        'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
                           + dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
                           + dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
                           = dw_surface_ltr.isurf.Top(load.val, v)""",
    }

    solvers = {
        'ls' : ('ls.scipy_direct', {}),
        'newton' : ('nls.newton', {
            'i_max'      : 5,
            'eps_a'      : 1e-10,
            'eps_r'      : 1.0,
        }),
        'ts' : ('ts.simple', {
            't0'    : 0,
            't1'    : 1,
            'dt'    : None,
            'n_step' : 101, # has precedence over dt!
            'verbose' : 1,
        }),
    }

    return locals()

##
# Pressure tractions.
def linear_tension(ts, coor, mode=None, **kwargs):
    if mode == 'qp':
        val = nm.tile(0.1 * ts.step, (coor.shape[0], 1, 1))
        return {'val' : val}

def linear_compression(ts, coor, mode=None, **kwargs):
    if mode == 'qp':
        val = nm.tile(-0.1 * ts.step, (coor.shape[0], 1, 1))
        return {'val' : val}


def store_top_u(displacements):
    """Function _store() will be called at the end of each loading step. Top
    displacements will be stored into `displacements`."""
    def _store(problem, ts, state):

        top = problem.domain.regions['Top']
        top_u = problem.get_variables()['u'].get_state_in_region(top)
        displacements.append(nm.mean(top_u[:,-1]))

    return _store

def solve_branch(problem, branch_function):
    displacements = {}
    for key, eq in six.iteritems(problem.conf.equations):
        problem.set_equations({key : eq})

        load = problem.get_materials()['load']
        load.set_function(branch_function)

        out = []
        problem.solve(save_results=False, step_hook=store_top_u(out))
        displacements[key] = nm.array(out, dtype=nm.float64)

    return displacements

helps = {
    'no_plot' : 'do not show plot window',
}

def main():
    from sfepy.base.base import output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem
    from sfepy.base.plotutils import plt

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-n', '--no-plot',
                        action="store_true", dest='no_plot',
                        default=False, help=helps['no_plot'])
    options = parser.parse_args()

    required, other = get_standard_keywords()
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__, required, other)

    # Create problem instance, but do not set equations.
    problem = Problem.from_conf(conf, init_equations=False)

    # Solve the problem. Output is ignored, results stored by using the
    # step_hook.
    u_t = solve_branch(problem, linear_tension)
    u_c = solve_branch(problem, linear_compression)

    # Get pressure load by calling linear_*() for each time step.
    ts = problem.get_timestepper()
    load_t = nm.array([linear_tension(ts, nm.array([[0.0]]), 'qp')['val']
                       for aux in ts.iter_from(0)],
                      dtype=nm.float64).squeeze()
    load_c = nm.array([linear_compression(ts, nm.array([[0.0]]), 'qp')['val']
                       for aux in ts.iter_from(0)],
                      dtype=nm.float64).squeeze()

    # Join the branches.
    displacements = {}
    for key in u_t.keys():
        displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
    load = nm.r_[load_c[::-1], load_t]


    if plt is None:
        output('matplotlib cannot be imported, printing raw data!')
        output(displacements)
        output(load)
    else:
        legend = []
        for key, val in six.iteritems(displacements):
            plt.plot(load, val)
            legend.append(key)

        plt.legend(legend, loc = 2)
        plt.xlabel('tension [kPa]')
        plt.ylabel('displacement [mm]')
        plt.grid(True)

        plt.gcf().savefig('pressure_displacement.png')

        if not options.no_plot:
            plt.show()

if __name__ == '__main__':
    main()