homogenization/homogenization_opt.py¶
Description
missing description!
from __future__ import absolute_import
import numpy as nm
import sfepy.discrete.fem.periodic as per
from sfepy.discrete.fem.mesh import Mesh
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.homogenization.utils import define_box_regions
import sfepy.homogenization.coefs_base as cb
from sfepy import data_dir
# material function
def get_mat(coors, mode, pb):
if mode == 'qp':
cnf = pb.conf
# get material coefficients
if hasattr(cnf, 'opt_data'):
# from optim.
E_f, nu_f, E_m, nu_m = cnf.opt_data['mat_params']
else:
# given values
E_f, nu_f, E_m, nu_m = 160.e9, 0.28, 5.e9, 0.45
nqp = coors.shape[0]
nel = pb.domain.mesh.n_el
nqpe = nqp // nel
out = nm.zeros((nqp, 6, 6), dtype=nm.float64)
# set values - matrix
D_m = stiffness_from_youngpoisson(3, E_m, nu_m)
Ym = pb.domain.regions['Ym'].get_cells()
idx0 = (nm.arange(nqpe)[:,nm.newaxis] * nm.ones((1, Ym.shape[0]),
dtype=nm.int32)).T.flatten()
idxs = (Ym[:,nm.newaxis] * nm.ones((1, nqpe),
dtype=nm.int32)).flatten() * nqpe
out[idxs + idx0,...] = D_m
# set values - fiber
D_f = stiffness_from_youngpoisson(3, E_f, nu_f)
Yf = pb.domain.regions['Yf'].get_cells()
idx0 = (nm.arange(nqpe)[:,nm.newaxis] * nm.ones((1, Yf.shape[0]),
dtype=nm.int32)).T.flatten()
idxs = (Yf[:,nm.newaxis] * nm.ones((1, nqpe),
dtype=nm.int32)).flatten() * nqpe
out[idxs + idx0,...] = D_f
return {'D': out}
def optimization_hook(pb):
cnf = pb.conf
out = []
yield pb, out
if hasattr(cnf, 'opt_data'):
# store homogenized tensor
pb.conf.opt_data['D_homog'] = out[-1].D.copy()
yield None
def define(is_opt=False):
filename_mesh = data_dir + '/meshes/3d/matrix_fiber_rand.vtk'
mesh = Mesh.from_file(filename_mesh)
bbox = mesh.get_bounding_box()
regions = {
'Y' : 'all',
'Ym' : ('cells of group 7', 'cell'),
'Yf' : ('r.Y -c r.Ym', 'cell'),
}
regions.update(define_box_regions(3, bbox[0], bbox[1]))
functions = {
'get_mat': (lambda ts, coors, mode=None, problem=None, **kwargs:
get_mat(coors, mode, problem),),
'match_x_plane' : (per.match_x_plane,),
'match_y_plane' : (per.match_y_plane,),
'match_z_plane' : (per.match_z_plane,),
}
materials = {
'mat': 'get_mat',
}
fields = {
'corrector' : ('real', 3, 'Y', 1),
}
variables = {
'u': ('unknown field', 'corrector'),
'v': ('test field', 'corrector', 'u'),
'Pi': ('parameter field', 'corrector', 'u'),
'Pi1': ('parameter field', 'corrector', '(set-to-None)'),
'Pi2': ('parameter field', 'corrector', '(set-to-None)'),
}
ebcs = {
'fixed_u' : ('Corners', {'u.all' : 0.0}),
}
epbcs = {
'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'),
'periodic_y' : (['Near', 'Far'], {'u.all' : 'u.all'}, 'match_y_plane'),
'periodic_z' : (['Top', 'Bottom'], {'u.all' : 'u.all'}, 'match_z_plane'),
}
all_periodic = ['periodic_%s' % ii for ii in ['x', 'y', 'z'][:3]]
options = {
'coefs': 'coefs',
'requirements': 'requirements',
'volume': { 'variables' : ['u'], 'expression' : 'ev_volume.5.Y( u )' },
'output_dir': 'output',
'coefs_filename': 'coefs_le',
}
equation_corrs = {
'balance_of_forces':
"""dw_lin_elastic.5.Y(mat.D, v, u)
= - dw_lin_elastic.5.Y(mat.D, v, Pi)"""
}
coefs = {
'D' : {
'requires' : ['pis', 'corrs_rs'],
'expression' : 'dw_lin_elastic.5.Y(mat.D, Pi1, Pi2 )',
'set_variables': [('Pi1', ('pis', 'corrs_rs'), 'u'),
('Pi2', ('pis', 'corrs_rs'), 'u')],
'class' : cb.CoefSymSym,
},
'vol': {
'regions': ['Ym', 'Yf'],
'expression': 'ev_volume.5.%s(u)',
'class': cb.VolumeFractions,
},
'filenames' : {},
}
requirements = {
'pis' : {
'variables' : ['u'],
'class' : cb.ShapeDimDim,
},
'corrs_rs' : {
'requires' : ['pis'],
'ebcs' : ['fixed_u'],
'epbcs' : all_periodic,
'equations' : equation_corrs,
'set_variables' : [('Pi', 'pis', 'u')],
'class' : cb.CorrDimDim,
'save_name' : 'corrs_le',
'is_linear': True,
},
}
solvers = {
'ls' : ('ls.auto_direct', {'use_presolve' : True}),
'newton' : ('nls.newton', {
'i_max' : 1,
'eps_a' : 1e-4,
'problem': 'linear',
})
}
if is_opt:
options.update({
'parametric_hook': 'optimization_hook',
'float_format': '%.16e',
})
return locals()