import os.path as op
import numpy as nm
import pytest
import sfepy.base.testing as tst
[docs]
def test_stokes_slip_bc(output_dir):
import scipy.sparse as sp
from sfepy.base.conf import ProblemConf
from sfepy.discrete import Problem
import sfepy.examples.navier_stokes.stokes_slip_bc as ssb
conf = ProblemConf.from_dict(
ssb.define(output_dir=output_dir, save_lcbc_vecs=True),
ssb,
)
pb = Problem.from_conf(conf, init_solvers=False)
pb.time_update()
variables = pb.get_variables()
adi = variables.adi
lcdi = variables.lcdi
mtx = variables.mtx_lcbc
ok = adi.var_names == lcdi.var_names
tst.report('same adi-lcdi ordering:', ok)
ublock = mtx[adi.indx['u']]
ir, ic = ublock.nonzero()
ir += adi.indx['u'].start
i0, i1 = adi.indx['u'].start, adi.indx['u'].stop
_ok0 = (i0 <= ir).all() and (ir < i1).all()
tst.report('u block rows in [%d %d[: %s' % (i0, i1, _ok0))
i0, i1 = lcdi.indx['u'].start, lcdi.indx['u'].stop
_ok1 = (i0 <= ic).all() and (ic < i1).all()
tst.report('u block cols in [%d %d[: %s' % (i0, i1, _ok1))
ok = ok and _ok0 and _ok1
pblock = mtx[adi.indx['p']]
ir, ic, iv = sp.find(pblock)
ir += adi.indx['p'].start
i0, i1 = adi.indx['p'].start, adi.indx['p'].stop
_ok0 = (i0 <= ir).all() and (ir < i1).all()
tst.report('p block rows in [%d %d[: %s' % (i0, i1, _ok0))
i0, i1 = lcdi.indx['p'].start, lcdi.indx['p'].stop
_ok1 = (i0 <= ic).all() and (ic < i1).all()
tst.report('p block cols in [%d %d[: %s' % (i0, i1, _ok1))
ok = ok and _ok0 and _ok1
_ok0 = (len(ir) == adi.n_dof['p'])
tst.report('p block size correct:', _ok0)
_ok1 = ((ir - adi.indx['p'].start) == (ic - lcdi.indx['p'].start)).all()
tst.report('p block diagonal:', _ok1)
_ok2 = (iv == 1.0).all()
tst.report('p block identity:', _ok2)
ok = ok and _ok0 and _ok1 and _ok2
assert ok
[docs]
def test_laplace_shifted_periodic(output_dir):
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.discrete.fem import FEDomain
from sfepy.examples.diffusion.laplace_shifted_periodic import run
dims = [2.0, 1.0]
shape = [21, 11]
centre = [0.0, 0.0]
mesh = gen_block_mesh(dims, shape, centre, name='block-fem')
domain = FEDomain('test_laplace_shifted_periodic', mesh)
pb, state = run(domain, 3, output_dir=output_dir)
gamma3 = pb.domain.regions['Gamma3']
gamma4 = pb.domain.regions['Gamma4']
field = pb.fields['fu']
# Check that the shift equals to one.
i3 = field.get_dofs_in_region(gamma3, merge=True)
i4 = field.get_dofs_in_region(gamma4, merge=True)
i_corners = nm.array([0, shape[0] - 1])
ii = nm.setdiff1d(nm.arange(len(i3)), i_corners)
vals = state()
shift = vals[i3] - vals[i4]
ok = (shift[i_corners] == 0.0).all()
ok = ok and nm.allclose(shift[ii], 1.0, rtol=0.0, atol=1e-14)
if not ok:
tst.report('wrong shift:', shift)
assert ok
[docs]
@pytest.mark.parametrize('mesh_filename', [
'meshes/2d/special/circle_in_square.mesh',
'meshes/3d/special/cube_sphere.mesh',
])
def test_elasticity_rigid(mesh_filename, output_dir):
from sfepy import data_dir
from sfepy.base.base import IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.mechanics.matcoefs import stiffness_from_lame
from sfepy.terms import Term
from sfepy.discrete.conditions import (Conditions, EssentialBC,
LinearCombinationBC)
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
filename = op.join(data_dir, mesh_filename)
mesh = Mesh.from_file(filename)
domain = FEDomain('domain', mesh)
min_x, max_x = domain.get_mesh_bounding_box()[:,0]
eps = 1e-8 * (max_x - min_x)
axis = {2 : 'y', 3 : 'z'}[mesh.dim]
order = {2 : 2, 3 : 1}[mesh.dim]
omega = domain.create_region('Omega', 'all')
yrig = domain.create_region('Yrig', 'cells of group 2')
bottom = domain.create_region('Bottom',
f'vertices in {axis} < {min_x + eps}',
'facet')
top = domain.create_region('Top',
f'vertices in {axis} > {max_x - eps}',
'facet')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = Material('m', D=stiffness_from_lame(dim=mesh.dim, lam=10.0, mu=1.0))
integral = Integral('i', order=2 * order)
t1 = Term.new('dw_lin_elastic(m.D, v, u)',
integral, omega, m=m, v=v, u=u)
eq = Equation('balance', t1)
eqs = Equations([eq])
fix = EssentialBC('fix', bottom, {'u.all' : 0.0})
load = EssentialBC('load', top, {'u.all' : 0.3})
rig = LinearCombinationBC('rig', [yrig, None], {'u.all' : None},
None, 'rigid')
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs)
trunk = f'test_elasticity_rigid_{mesh.dim}d'
pb.setup_output(output_filename_trunk=trunk, output_dir=output_dir)
pb.save_regions_as_groups(op.join(output_dir, trunk + '_regions'))
pb.set_bcs(ebcs=Conditions([fix, load]), lcbcs=Conditions([rig]))
pb.set_solver(nls)
status = IndexedStruct()
pb.solve(status=status)
assert nls_status.condition == 0
strain = u.evaluate('cauchy_strain', region=yrig, integral=integral)
mstrain = nm.abs(strain).max()
tst.report('max |strain| in rigid region:', mstrain)
assert mstrain < 1e-13