Source code for sfepy.tests.test_lcbcs

import os.path as op
import numpy as nm
import pytest

import sfepy.base.testing as tst

[docs] def test_stokes_slip_bc(output_dir): import scipy.sparse as sp from sfepy.base.conf import ProblemConf from sfepy.discrete import Problem import sfepy.examples.navier_stokes.stokes_slip_bc as ssb conf = ProblemConf.from_dict( ssb.define(output_dir=output_dir, save_lcbc_vecs=True), ssb, ) pb = Problem.from_conf(conf, init_solvers=False) pb.time_update() variables = pb.get_variables() adi = variables.adi lcdi = variables.lcdi mtx = variables.mtx_lcbc ok = adi.var_names == lcdi.var_names tst.report('same adi-lcdi ordering:', ok) ublock = mtx[adi.indx['u']] ir, ic = ublock.nonzero() ir += adi.indx['u'].start i0, i1 = adi.indx['u'].start, adi.indx['u'].stop _ok0 = (i0 <= ir).all() and (ir < i1).all() tst.report('u block rows in [%d %d[: %s' % (i0, i1, _ok0)) i0, i1 = lcdi.indx['u'].start, lcdi.indx['u'].stop _ok1 = (i0 <= ic).all() and (ic < i1).all() tst.report('u block cols in [%d %d[: %s' % (i0, i1, _ok1)) ok = ok and _ok0 and _ok1 pblock = mtx[adi.indx['p']] ir, ic, iv = sp.find(pblock) ir += adi.indx['p'].start i0, i1 = adi.indx['p'].start, adi.indx['p'].stop _ok0 = (i0 <= ir).all() and (ir < i1).all() tst.report('p block rows in [%d %d[: %s' % (i0, i1, _ok0)) i0, i1 = lcdi.indx['p'].start, lcdi.indx['p'].stop _ok1 = (i0 <= ic).all() and (ic < i1).all() tst.report('p block cols in [%d %d[: %s' % (i0, i1, _ok1)) ok = ok and _ok0 and _ok1 _ok0 = (len(ir) == adi.n_dof['p']) tst.report('p block size correct:', _ok0) _ok1 = ((ir - adi.indx['p'].start) == (ic - lcdi.indx['p'].start)).all() tst.report('p block diagonal:', _ok1) _ok2 = (iv == 1.0).all() tst.report('p block identity:', _ok2) ok = ok and _ok0 and _ok1 and _ok2 assert ok
[docs] def test_laplace_shifted_periodic(output_dir): from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.discrete.fem import FEDomain from sfepy.examples.diffusion.laplace_shifted_periodic import run dims = [2.0, 1.0] shape = [21, 11] centre = [0.0, 0.0] mesh = gen_block_mesh(dims, shape, centre, name='block-fem') domain = FEDomain('test_laplace_shifted_periodic', mesh) pb, state = run(domain, 3, output_dir=output_dir) gamma3 = pb.domain.regions['Gamma3'] gamma4 = pb.domain.regions['Gamma4'] field = pb.fields['fu'] # Check that the shift equals to one. i3 = field.get_dofs_in_region(gamma3, merge=True) i4 = field.get_dofs_in_region(gamma4, merge=True) i_corners = nm.array([0, shape[0] - 1]) ii = nm.setdiff1d(nm.arange(len(i3)), i_corners) vals = state() shift = vals[i3] - vals[i4] ok = (shift[i_corners] == 0.0).all() ok = ok and nm.allclose(shift[ii], 1.0, rtol=0.0, atol=1e-14) if not ok: tst.report('wrong shift:', shift) assert ok
[docs] @pytest.mark.parametrize('mesh_filename', [ 'meshes/2d/special/circle_in_square.mesh', 'meshes/3d/special/cube_sphere.mesh', ]) def test_elasticity_rigid(mesh_filename, output_dir): from sfepy import data_dir from sfepy.base.base import IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.mechanics.matcoefs import stiffness_from_lame from sfepy.terms import Term from sfepy.discrete.conditions import (Conditions, EssentialBC, LinearCombinationBC) from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton filename = op.join(data_dir, mesh_filename) mesh = Mesh.from_file(filename) domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) axis = {2 : 'y', 3 : 'z'}[mesh.dim] order = {2 : 2, 3 : 1}[mesh.dim] omega = domain.create_region('Omega', 'all') yrig = domain.create_region('Yrig', 'cells of group 2') bottom = domain.create_region('Bottom', f'vertices in {axis} < {min_x + eps}', 'facet') top = domain.create_region('Top', f'vertices in {axis} > {max_x - eps}', 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim=mesh.dim, lam=10.0, mu=1.0)) integral = Integral('i', order=2 * order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) eq = Equation('balance', t1) eqs = Equations([eq]) fix = EssentialBC('fix', bottom, {'u.all' : 0.0}) load = EssentialBC('load', top, {'u.all' : 0.3}) rig = LinearCombinationBC('rig', [yrig, None], {'u.all' : None}, None, 'rigid') ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) trunk = f'test_elasticity_rigid_{mesh.dim}d' pb.setup_output(output_filename_trunk=trunk, output_dir=output_dir) pb.save_regions_as_groups(op.join(output_dir, trunk + '_regions')) pb.set_bcs(ebcs=Conditions([fix, load]), lcbcs=Conditions([rig])) pb.set_solver(nls) status = IndexedStruct() pb.solve(status=status) assert nls_status.condition == 0 strain = u.evaluate('cauchy_strain', region=yrig, integral=integral) mstrain = nm.abs(strain).max() tst.report('max |strain| in rigid region:', mstrain) assert mstrain < 1e-13