Source code for sfepy.tests.test_laplace_unit_disk

import pytest

from sfepy import data_dir
import sfepy.base.testing as tst

filename_mesh = data_dir + '/meshes/2d/circle_sym.mesh'

material_1 = {
    'name' : 'coef',
    'values' : {
        'val' : 1.0,
    },
}
material_2 = {
    'name' : 'm',
    'values' : {
        'K' : [[1.0, 0.0], [0.0, 1.0]],
    },
}

field_1 = {
    'name' : 'a_harmonic_field',
    'dtype' : 'real',
    'shape' : 'scalar',
    'region' : 'Omega',
    'approx_order' : 2,
}

variable_1 = {
    'name' : 't',
    'kind' : 'unknown field',
    'field' : 'a_harmonic_field',
    'order' : 0,
}
variable_2 = {
    'name' : 's',
    'kind' : 'test field',
    'field' : 'a_harmonic_field',
    'dual' : 't',
}

region_1000 = {
    'name' : 'Omega',
    'select' : 'all',
}

region_1 = {
    'name' : 'Centre',
    'select' : 'vertices in (x < 1e-8) & (x > -1e-8) & (y < 1e-8) & (y > -1e-8)',
    'kind' : 'vertex'
}

region_2 = {
    'name' : 'Gamma',
    'select' : 'vertices of surface',
    'kind' : 'facet',
}

ebc_1 = {
    'name' : 't_centre',
    'region' : 'Centre',
    'dofs' : {'t.0' : 1.0},
}
ebc_2 = {
    'name' : 't_gamma',
    'region' : 'Gamma',
    'dofs' : {'t.0' : 0.0},
}

integral_1 = {
    'name' : 'i',
    'order' : 2,
}

equations = {
    'Temperature' : """dw_laplace.i.Omega(coef.val, s, t) = 0"""
}

solution = {
    't' : '- 5.0 * (x - 0.5)',
}

solver_0 = {
    'name' : 'ls',
    'kind' : 'ls.scipy_direct',
}

solver_1 = {
    'name' : 'newton',
    'kind' : 'nls.newton',

    'i_max'      : 1,
    'eps_a'      : 1e-10,
}

[docs] @pytest.fixture(scope='module') def data(): import sys from sfepy.applications import solve_pde from sfepy.base.conf import ProblemConf from sfepy.base.base import Struct conf = ProblemConf.from_dict(globals(), sys.modules[__name__]) problem, state = solve_pde(conf, save_results=False) return Struct(problem=problem, state=state)
[docs] def test_boundary_fluxes(data): from sfepy.discrete import Material problem = data.problem region_names = ['Gamma'] variables = problem.get_variables() get_state = variables.get_vec_part state = data.state.copy() problem.time_update(ebcs={}, epbcs={}) state.apply_ebc() nls = problem.get_nls() aux = nls.fun(state()) field = variables['t'].field conf_m = problem.conf.get_item_by_name('materials', 'm') m = Material.from_conf(conf_m, problem.functions) ok = True for ii, region_name in enumerate(region_names): flux_term = 'ev_surface_flux.1.%s(m.K, t)' % region_name val1 = problem.evaluate(flux_term, t=variables['t'], m=m) rvec = get_state(aux, 't', True) reg = problem.domain.regions[region_name] nods = field.get_dofs_in_region(reg, merge=True) val2 = rvec[nods].sum() # Assume 1 dof per node. eps = 1e-2 ok = ok and ((abs(val1 - val2) < eps)) tst.report('%d. %s: |%e - %e| = %e < %.2e'\ % (ii, region_name, val1, val2, abs(val1 - val2), eps)) assert ok