Source code for sfepy.terms.terms_surface
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_
from sfepy.terms.terms import Term, terms
from sfepy.linalg import dot_sequences
from sfepy.mechanics.contact_bodies import ContactPlane, ContactSphere
from sfepy.mechanics.tensors import get_full_indices
from sfepy.discrete.common.extmods._geommech import geme_mulAVSB3py
from six.moves import range
##
# 22.08.2006, c
[docs]
class LinearTractionTerm(Term):
r"""
Linear traction forces, where, depending on dimension of
'material' argument, :math:`\ull{\sigma} \cdot \ul{n}` is
:math:`\bar{p} \ull{I} \cdot \ul{n}` for a given scalar pressure,
:math:`\ul{f}` for a traction vector, and itself for a stress tensor.
The material parameter can have one of the following shapes: 1 or (1, 1),
(D, 1), (S, 1) in all modes, or (D, D) in the `eval` mode only.
The symmetric tensor storage (S, 1) is as follows: in 3D S = 6
and the indices ordered as :math:`[11, 22, 33, 12, 13, 23]`,
in 2D S = 3 and the indices ordered as :math:`[11, 22, 12]`.
:Definition:
.. math::
\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n},
\int_{\Gamma} \ul{v} \cdot \ul{n},
:Arguments:
- material : :math:`\ull{\sigma}`
- virtual : :math:`\ul{v}`
"""
name = 'dw_surface_ltr'
arg_types = (('opt_material', 'virtual'),
('opt_material', 'parameter'))
arg_shapes = [{'opt_material' : 'S, 1', 'virtual' : ('D', None),
'parameter' : 'D'},
{'opt_material' : 'D, 1'}, {'opt_material' : '1, 1'},
{'opt_material' : 'D, D'}, {'opt_material' : None}]
modes = ('weak', 'eval')
integration = 'facet'
[docs]
@staticmethod
def d_fun(out, traction, val, sg):
tdim, tdim2 = traction.shape[2:]
dim = val.shape[2]
sym = (dim + 1) * dim // 2
if tdim == 0:
aux = dot_sequences(val, sg.normal, 'ATB')
elif tdim == 1: # Pressure
aux = dot_sequences(val, traction * sg.normal, 'ATB')
elif tdim == dim and tdim2 == 1: # Traction vector
aux = dot_sequences(val, traction, 'ATB')
elif tdim == dim and tdim2 == dim: # Traction tensor - nonsymmetric
trn = dot_sequences(traction, sg.normal, 'ATB')
aux = dot_sequences(val, trn, 'ATB')
elif tdim == sym: # Traction tensor
trn, ret = geme_mulAVSB3py(traction, sg.normal)
aux = dot_sequences(val, trn, 'ATB')
status = sg.integrate(out, aux)
return status
[docs]
def get_fargs(self, traction, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
if traction is not None:
n_el, _, _, _, _ = self.get_data_shape(virtual)
traction = Term.tile_mat(traction, n_el)
if traction is None:
traction = nm.zeros((0,0,0,0), dtype=nm.float64)
if mode == 'weak':
return traction, sg
elif mode == 'eval':
val = self.get(virtual, 'val')
return traction, val, sg
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))
[docs]
def get_eval_shape(self, traction, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(virtual)
return (n_el, 1, 1, 1), virtual.dtype
[docs]
def set_arg_types( self ):
if self.mode == 'weak':
self.function = terms.dw_surface_ltr
else:
self.function = self.d_fun
[docs]
class SDLinearTractionTerm(Term):
r"""
Sensitivity of the linear traction term.
:Definition:
.. math::
\int_{\Gamma} \ul{v} \cdot (\ull{\sigma}\, \ul{n}),
\int_{\Gamma} \ul{v} \cdot \ul{n},
:Arguments:
- material : :math:`\ull{\sigma}`
- parameter : :math:`\ul{v}`
"""
name = 'ev_sd_surface_ltr'
arg_types = ('opt_material', 'parameter', 'parameter_mv')
arg_shapes = [{'opt_material': 'S, 1', 'parameter': 'D',
'parameter_mv': 'D'}, {'opt_material': '1, 1'},
{'opt_material': 'D, 1'}, {'opt_material': 'D, D'},
{'opt_material': None}]
integration = 'facet'
[docs]
@staticmethod
def d_fun(out, traction, val, grad_mv, div_mv, sg):
tdim, tdim2 = (None, None) if traction is None else traction.shape[2:]
dim = val.shape[2]
sym = (dim + 1) * dim // 2
n_el, n_qp = div_mv.shape[:2]
val2 = sg.normal
if tdim is None:
trac = nm.tile(nm.eye(dim), (n_el, n_qp, 1, 1))
elif tdim == 1:
trac = nm.tile(nm.eye(dim), (n_el, n_qp, 1, 1)) * traction
elif tdim == dim and tdim2 == 1: # Traction vector
trac = nm.tile(nm.eye(dim), (n_el, n_qp, 1, 1))
val2 = traction
elif tdim == dim and tdim2 == dim: # Traction tensor - nonsymmetric
trac = traction
elif tdim == sym: # Traction tensor
remap = nm.array(get_full_indices(dim)).flatten()
trac = traction[..., remap, :].reshape((-1, n_qp, dim, dim))
sa_trac = trac * div_mv
sa_trac -= nm.einsum('qpik,qpkj->qpij', trac, grad_mv,
optimize='greedy')
aux = dot_sequences(val, sa_trac, 'ATB')
aux = dot_sequences(aux, val2, 'AB')
status = sg.integrate(out, aux)
return status
[docs]
def get_fargs(self, traction, par_u, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(par_u)
val = self.get(par_u, 'val')
grad_mv = self.get(par_mv, 'grad', integration='facet_extra')
div_mv = self.get(par_mv, 'div', integration='facet_extra')
return traction, val, grad_mv, div_mv, sg
[docs]
def get_eval_shape(self, traction, par_u, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
[docs]
class ContactPlaneTerm(Term):
r"""
Small deformation elastic contact plane term with penetration penalty.
The plane is given by an anchor point :math:`\ul{A}` and a normal
:math:`\ul{n}`. The contact occurs in points that orthogonally project onto
the plane into a polygon given by orthogonal projections of boundary points
:math:`\{\ul{B}_i\}`, :math:`i = 1, \dots, N_B` on the plane. In such
points, a penetration distance :math:`d(\ul{u}) = (\ul{X} + \ul{u} -
\ul{A}, \ul{n})` is computed, and a force :math:`f(d(\ul{u})) \ul{n}` is
applied. The force depends on the non-negative parameters :math:`k`
(stiffness) and :math:`f_0` (force at zero penetration):
- If :math:`f_0 = 0`:
.. math::
f(d) = 0 \mbox{ for } d \leq 0 \;, \\
f(d) = k d \mbox{ for } d > 0 \;.
- If :math:`f_0 > 0`:
.. math::
f(d) = 0 \mbox{ for } d \leq -\frac{2 r_0}{k} \;, \\
f(d) = \frac{k^2}{4 r_0} d^2 + k d + r_0
\mbox{ for } -\frac{2 r_0}{k} < d \leq 0 \;, \\
f(d) = k d + f_0 \mbox{ for } d > 0 \;.
In this case the dependence :math:`f(d)` is smooth, and a (small) force
is applied even for (small) negative penetrations: :math:`-\frac{2
r_0}{k} < d \leq 0`.
:Definition:
.. math::
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}
:Arguments:
- material_f : :math:`[k, f_0]`
- material_n : :math:`\ul{n}` (special)
- material_a : :math:`\ul{A}` (special)
- material_b : :math:`\{\ul{B}_i\}`, :math:`i = 1, \dots, N_B` (special)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_contact_plane'
arg_types = ('material_f', 'material_n', 'material_a', 'material_b',
'virtual', 'state')
arg_shapes = {'material_f' : '1, 2', 'material_n' : '.: D',
'material_a' : '.: D', 'material_b' : '.: N, D',
'virtual' : ('D', 'state'), 'state' : 'D'}
geometries = ['3_4', '3_8']
integration = 'facet'
def __init__(self, *args, **kwargs):
Term.__init__(self, *args, **kwargs)
self.cp = None
[docs]
@staticmethod
def function(out, force, normal, geo, fmode):
bf = geo.bf[0]
nbf = bf * normal[None, :, None]
nbf.shape = (bf.shape[0], bf.shape[2] * normal.shape[0])
if fmode == 0:
out_qp = force * nbf[None, :, :, None]
else:
nbf2 = nbf[:, :, None] * nbf[:, None, :]
out_qp = force * nbf2[None, :, :, :]
status = geo.integrate(out, nm.ascontiguousarray(out_qp))
return status
[docs]
@staticmethod
def smooth_f(d, k, f0, a, eps, diff):
ii = nm.where((d > eps) & (d <= 0.0))[0]
if not diff:
out = nm.where(d > 0.0, k * d + f0, 0.0)
if len(ii):
di = d[ii]
out[ii] = a[ii] * di**2 + k[ii] * di + f0[ii]
else:
out = nm.where(d > 0.0, k, 0.0)
if len(ii):
out[ii] = 2 * a[ii] * d[ii] + k[ii]
return out
@staticmethod
def _get_force_pars(force_pars, shape):
k = force_pars[..., 0]
f0 = force_pars[..., 1]
k.shape = f0.shape = shape
ir = f0 >= 1e-14
eps = nm.where(ir, - 2.0 * f0 / k, 0.0)
a = nm.zeros_like(eps)
a[ir] = k[ir]**2 / (4.0 * f0[ir])
return k, f0, eps, a
[docs]
def get_fargs(self, force_pars, normal, anchor, bounds, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
assert_((force_pars >= 0.0).all(),
'force parameters must be non-negative!')
force_pars = Term.tile_mat(force_pars, sg.n_el)
if self.cp is None:
self.cp = ContactPlane(anchor, normal, bounds)
qps = self.get_physical_qps()
qp_coors = qps.values
u_qp = self.get(state, 'val').reshape(qp_coors.shape)
# Deformed QP coordinates.
coors = u_qp + qp_coors
force = nm.zeros(coors.shape[0], dtype=nm.float64)
k, f0, eps, a = self._get_force_pars(force_pars, force.shape)
# Active points in contact change with displacements!
ii = self.cp.mask_points(qp_coors)
if diff_var is None:
if ii.any():
d = self.cp.get_distance(coors[ii])
# Force in the plane normal direction.
force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)
fmode = 0
else:
if ii.any():
d = self.cp.get_distance(coors[ii])
# Force in the plane normal direction derivative.
force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 1)
fmode = 1
force.shape = qps.shape[:2] + (1, 1)
return force, self.cp.normal, sg, fmode
[docs]
class ContactSphereTerm(ContactPlaneTerm):
r"""
Small deformation elastic contact sphere term with penetration penalty.
The sphere is given by a centre point :math:`\ul{C}` and a radius
:math:`R`. The contact occurs in points that are closer to :math:`\ul{C}`
than :math:`R`. In such points, a penetration distance :math:`d(\ul{u}) =
R - ||\ul{X} + \ul{u} - \ul{C}||` is computed, and a force
:math:`f(d(\ul{u})) \ul{n}(\ul{u})` is applied, where :math:`\ul{n}(\ul{u})
= (\ul{X} + \ul{u} - \ul{C}) / ||\ul{X} + \ul{u} - \ul{C}||`. The force
depends on the non-negative parameters :math:`k` (stiffness) and
:math:`f_0` (force at zero penetration):
- If :math:`f_0 = 0`:
.. math::
f(d) = 0 \mbox{ for } d \leq 0 \;, \\
f(d) = k d \mbox{ for } d > 0 \;.
- If :math:`f_0 > 0`:
.. math::
f(d) = 0 \mbox{ for } d \leq -\frac{2 r_0}{k} \;, \\
f(d) = \frac{k^2}{4 r_0} d^2 + k d + r_0
\mbox{ for } -\frac{2 r_0}{k} < d \leq 0 \;, \\
f(d) = k d + f_0 \mbox{ for } d > 0 \;.
In this case the dependence :math:`f(d)` is smooth, and a (small) force
is applied even for (small) negative penetrations: :math:`-\frac{2
r_0}{k} < d \leq 0`.
:Definition:
.. math::
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
:Arguments:
- material_f : :math:`[k, f_0]`
- material_c : :math:`\ul{C}` (special)
- material_r : :math:`R` (special)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_contact_sphere'
arg_types = ('material_f', 'material_c', 'material_r', 'virtual', 'state')
arg_shapes = {'material_f' : '1, 2', 'material_c' : '.: D',
'material_r' : '.: 1',
'virtual' : ('D', 'state'), 'state' : 'D'}
geometries = ['3_4', '3_8']
integration = 'facet'
def __init__(self, *args, **kwargs):
Term.__init__(self, *args, **kwargs)
self.cs = None
[docs]
@staticmethod
def function(out, force, normals, fd, geo, fmode):
bf = geo.bf[0]
nbf = bf * normals
nbf.shape = (normals.shape[0], normals.shape[1],
bf.shape[2] * normals.shape[2])
if fmode == 0:
out_qp = force * nbf[..., None]
else:
nbf2 = nbf[..., None] * nbf[..., None, :]
dim = normals.shape[2]
n_ep = bf.shape[2]
bb = bf[:, 0]
vb = nm.zeros((bf.shape[0], dim, dim * n_ep))
for ii in range(dim):
vb[:, ii, ii*n_ep:(ii+1)*n_ep] = bb
ee = nm.eye(3)[None, ...]
eebf2 = dot_sequences(vb, dot_sequences(ee, vb), 'ATB')
out_qp = force * nbf2
if fd is not None:
out_qp -= fd * (eebf2[None, :, :, :] - nbf2)
status = geo.integrate(out, nm.ascontiguousarray(out_qp))
return status
[docs]
def get_fargs(self, force_pars, centre, radius, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
assert_((force_pars >= 0.0).all(),
'force parameters must be non-negative!')
force_pars = Term.tile_mat(force_pars, sg.n_el)
if self.cs is None:
self.cs = ContactSphere(centre, radius)
qps = self.get_physical_qps()
qp_coors = qps.values
u_qp = self.get(state, 'val').reshape(qp_coors.shape)
# Deformed QP coordinates.
coors = u_qp + qp_coors
force = nm.zeros(coors.shape[0], dtype=nm.float64)
normals = nm.zeros((coors.shape[0], 3), dtype=nm.float64)
fd = None
k, f0, eps, a = self._get_force_pars(force_pars, force.shape)
# Active points in contact change with displacements!
ii = self.cs.mask_points(coors, nm.abs(eps.min()))
if diff_var is None:
if ii.any():
d, normals[ii] = self.cs.get_distance(coors[ii])
force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)
fmode = 0
else:
if ii.any():
d, normals[ii] = self.cs.get_distance(coors[ii])
# Force derivative.
force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 1)
# Force / (R - d).
aux = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)
fd = nm.zeros_like(force)
fd[ii] = aux / (self.cs.radius - d)
fd.shape = qps.shape[:2] + (1, 1)
fmode = 1
force.shape = qps.shape[:2] + (1, 1)
normals.shape = qps.shape[:2] + (3, 1)
return force, normals, fd, sg, fmode
[docs]
class SufaceNormalDotTerm(Term):
r"""
"Scalar traction" term, (weak form).
:Definition:
.. math::
\int_{\Gamma} q \ul{c} \cdot \ul{n}
:Arguments:
- material : :math:`\ul{c}`
- virtual : :math:`q`
"""
name = 'dw_surface_ndot'
arg_types = (('material', 'virtual'),
('material', 'parameter'))
arg_shapes = {'material' : 'D, 1', 'virtual' : (1, None), 'parameter' : 1}
modes = ('weak', 'eval')
integration = 'facet'
[docs]
@staticmethod
def dw_fun(out, material, bf, sg):
bf_t = nm.tile(bf.transpose((0, 1, 3, 2)), (out.shape[0], 1, 1, 1))
bf_t = nm.ascontiguousarray(bf_t)
aux = dot_sequences(material, sg.normal, 'ATB')
status = sg.integrate(out, bf_t * aux)
return status
[docs]
@staticmethod
def d_fun(out, material, val, sg):
aux = dot_sequences(material, sg.normal, 'ATB')
status = sg.integrate(out, val * aux)
return status
[docs]
def get_fargs(self, mat, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
if mode == 'weak':
return mat, sg.bf, sg
elif mode == 'eval':
val = self.get(virtual, 'val')
return mat, val, sg
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))
[docs]
def get_eval_shape(self, mat, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(virtual)
return (n_el, 1, 1, 1), virtual.dtype
[docs]
def set_arg_types( self ):
if self.mode == 'weak':
self.function = self.dw_fun
else:
self.function = self.d_fun
[docs]
class SDSufaceIntegrateTerm(Term):
r"""
Sensitivity of scalar traction.
:Definition:
.. math::
\int_{\Gamma} p \nabla \cdot \ul{\Vcal}
:Arguments:
- parameter : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'ev_sd_surface_integrate'
arg_types = ('parameter', 'parameter_mv')
arg_shapes = {'parameter': 1, 'parameter_mv': 'D'}
integration = 'facet'
[docs]
@staticmethod
def function(out, val_p, div_v, sg):
status = sg.integrate(out, val_p * div_v)
return status
[docs]
def get_fargs(self, par, par_v,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(par)
val_p = self.get(par, 'val')
div_v = self.get(par_v, 'div', integration='facet_extra')
return val_p, div_v, sg
[docs]
def get_eval_shape(self, par, par_v,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_v)
return (n_el, 1, 1, 1), par.dtype
[docs]
class SurfaceJumpTerm(Term):
r"""
Interface jump condition.
:Definition:
.. math::
\int_{\Gamma} c\, q (p_1 - p_2)
:Arguments:
- material : :math:`c`
- virtual : :math:`q`
- state_1 : :math:`p_1`
- state_2 : :math:`p_2`
"""
name = 'dw_jump'
arg_types = ('opt_material', 'virtual', 'state_1', 'state_2')
arg_shapes = [{'opt_material' : '1, 1', 'virtual' : (1, None),
'state_1' : 1, 'state_2' : 1},
{'opt_material' : None}]
integration = 'facet'
[docs]
@staticmethod
def function(out, jump, mul, bf1, bf2, sg, fmode):
bf_t = nm.tile(sg.bf.transpose((0, 1, 3, 2)), (out.shape[0], 1, 1, 1))
if fmode == 0:
vec = bf_t * jump
elif fmode == 1:
vec = bf_t * bf1
else:
vec = - bf_t * bf2
if mul is None:
status = sg.integrate(out, vec)
else:
status = sg.integrate(out, mul * vec)
return status
[docs]
def get_fargs(self, coef, virtual, state1, state2,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
sg1, _ = self.get_mapping(state1)
sg2, _ = self.get_mapping(state2)
if diff_var is None:
val1 = self.get(state1, 'val')
val2 = self.get(state2, 'val')
jump = val1 - val2
fmode = 0
else:
jump = None
if diff_var == state1.name:
fmode = 1
else:
fmode = 2
return jump, coef, sg1.bf, sg2.bf, sg, fmode