from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import Struct
from sfepy.terms.terms import terms
from sfepy.terms.terms_hyperelastic_base import\
HyperElasticBase, HyperElasticFamilyData
_msg_missing_data = 'missing family data!'
[docs]
class HyperElasticULFamilyData(HyperElasticFamilyData):
"""
Family data for UL formulation.
"""
family_function = staticmethod(terms.dq_finite_strain_ul)
cache_name = 'ul_common'
data_names = ('mtx_f', 'det_f', 'sym_b', 'tr_b', 'in2_b', 'green_strain')
[docs]
class HyperElasticULBase(HyperElasticBase):
"""
Base class for all hyperelastic terms in UL formulation family.
The subclasses should have the following static method attributes:
- `stress_function()` (the stress)
- `tan_mod_function()` (the tangent modulus)
"""
weak_function = staticmethod(terms.dw_he_rtm)
hyperelastic_mode = 1
get_family_data = HyperElasticULFamilyData()
[docs]
class NeoHookeanULTerm(HyperElasticULBase):
r"""
Hyperelastic neo-Hookean term. Effective stress :math:`\tau_{ij} = \mu
J^{-\frac{2}{3}}(b_{ij} - \frac{1}{3}b_{kk}\delta_{ij})`.
:Definition:
.. math::
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
:Arguments:
- material : :math:`\mu`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_ul_he_neohook'
family_data_names = ['det_f', 'tr_b', 'sym_b']
stress_function = staticmethod(terms.dq_ul_he_stress_neohook)
tan_mod_function = staticmethod(terms.dq_ul_he_tan_mod_neohook)
[docs]
class MooneyRivlinULTerm(HyperElasticULBase):
r"""
Hyperelastic Mooney-Rivlin term.
:Definition:
.. math::
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
:Arguments:
- material : :math:`\kappa`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_ul_he_mooney_rivlin'
family_data_names = ['det_f', 'tr_b', 'sym_b', 'in2_b']
stress_function = staticmethod(terms.dq_ul_he_stress_mooney_rivlin)
tan_mod_function = staticmethod(terms.dq_ul_he_tan_mod_mooney_rivlin)
[docs]
class BulkPenaltyULTerm(HyperElasticULBase):
r"""
Hyperelastic bulk penalty term. Stress :math:`\tau_{ij} = K(J-1)\; J
\delta_{ij}`.
:Definition:
.. math::
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
:Arguments:
- material : :math:`K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_ul_bulk_penalty'
family_data_names = ['det_f']
stress_function = staticmethod(terms.dq_ul_he_stress_bulk)
tan_mod_function = staticmethod(terms.dq_ul_he_tan_mod_bulk)
[docs]
class BulkPressureULTerm(HyperElasticULBase):
r"""
Hyperelastic bulk pressure term. Stress :math:`S_{ij} = -p J \delta_{ij}`.
:Definition:
.. math::
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
- state_p : :math:`p`
"""
name = 'dw_ul_bulk_pressure'
arg_types = ('virtual', 'state', 'state_p')
arg_geometry_types = {('state_p', None) : {'facet_extra' : 'facet'}}
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'state_p' : 1}
family_data_names = ['det_f', 'sym_b']
family_function = staticmethod(terms.dq_finite_strain_ul)
weak_function = staticmethod(terms.dw_he_rtm)
weak_dp_function = staticmethod(terms.dw_ul_volume)
stress_function = staticmethod(terms.dq_ul_stress_bulk_pressure)
tan_mod_u_function = staticmethod(terms.dq_ul_tan_mod_bulk_pressure_u)
[docs]
def compute_data(self, family_data, mode, **kwargs):
det_f, sym_b = family_data.det_f, family_data.sym_b
p_qp = family_data.p_qp
if mode == 0:
out = nm.empty_like(sym_b)
fun = self.stress_function
elif mode == 1:
shape = list(sym_b.shape)
shape[-1] = shape[-2]
out = nm.empty(shape, dtype=nm.float64)
fun = self.tan_mod_u_function
else:
raise ValueError('bad mode! (%d)' % mode)
fun(out, p_qp, det_f)
return out
[docs]
def get_fargs(self, virtual, state, state_p,
mode=None, term_mode=None, diff_var=None, **kwargs):
vgv, _ = self.get_mapping(state)
name = state.name
fd = self.get_family_data(state, self.region, self.integral,
self.geometry_types[name],
self.arg_steps[name],
self.arg_derivatives[name])
fd.p_qp = self.get(state_p, 'val')
if mode == 'weak':
if diff_var != state_p.name:
if diff_var is None:
stress = self.compute_data(fd, 0, **kwargs)
self.stress_cache = stress
tan_mod = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 0
else:
stress = self.stress_cache
if stress is None:
stress = self.compute_data(fd, 0, **kwargs)
tan_mod = self.compute_data(fd, 1, **kwargs)
fmode = 1
fargs = (self.weak_function,
stress, tan_mod, fd.mtx_f, fd.det_f, vgv, fmode, 1)
else:
vgs, _ = self.get_mapping(state_p)
fargs = (self.weak_dp_function, fd.det_f, vgs, vgv, 1, -1)
return fargs
elif mode == 'el_avg':
if term_mode == 'strain':
out_qp = fd.green_strain
elif term_mode == 'stress':
out_qp = self.compute_data(fd, 0, **kwargs)
else:
raise ValueError('unsupported term mode in %s! (%s)'
% (self.name, term_mode))
return self.integrate, out_qp, vgv, 1
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))
[docs]
def get_eval_shape(self, virtual, state, state_p,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state)
sym = (dim + 1) * dim // 2
return (n_el, 1, sym, 1), state.dtype
[docs]
class VolumeULTerm(HyperElasticULBase):
r"""
Volume term (weak form) in the updated Lagrangian formulation.
:Definition:
.. math::
\begin{array}{l}
\int_{\Omega} q J(\ul{u}) \\
\mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K}
J(\ul{u}) \\
\mbox{rel\_volume mode: vector for } K \from \Ical_h:
\int_{T_K} J(\ul{u}) / \int_{T_K} 1
\end{array}
:Arguments:
- virtual : :math:`q`
- state : :math:`\ul{u}`
"""
name = 'dw_ul_volume'
arg_types = ('virtual', 'state')
arg_geometry_types = {('virtual', None) : {'facet_extra' : 'facet'}}
arg_shapes = {'virtual' : (1, None), 'state' : 'D'}
family_data_names = ['mtx_f', 'det_f']
function = staticmethod(terms.dw_ul_volume)
[docs]
def get_fargs(self, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vgs, _ = self.get_mapping(virtual)
vgv, _ = self.get_mapping(state)
name = state.name
fd = self.get_family_data(state, self.region, self.integral,
self.geometry_types[name],
self.arg_steps[name],
self.arg_derivatives[name])
if mode == 'weak':
if diff_var is None:
fmode = 0
else:
fmode = 1
elif mode == 'eval':
if term_mode == 'volume':
fmode = 2
elif term_mode == 'rel_volume':
fmode = 3
else:
raise ValueError('unsupported term evaluation mode in %s! (%s)'
% (self.name, term_mode))
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))
return fd.det_f, vgs, vgv, 0, fmode
[docs]
def get_eval_shape(self, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state)
return (n_el, 1, 1, 1), state.dtype
[docs]
class CompressibilityULTerm(HyperElasticULBase):
r"""
Compressibility term for the updated Lagrangian formulation
:Definition:
.. math::
\int_{\Omega} 1\over \gamma p \, q
:Arguments:
- material : :math:`\gamma`
- virtual : :math:`q`
- state : :math:`p`
- parameter_u : :math:`\ul(u)`
"""
name = 'dw_ul_compressible'
arg_types = ('material', 'virtual', 'state', 'parameter_u')
arg_geometry_types = {('virtual', None) : {'facet_extra' : 'facet'},
('state', None) : {'facet_extra' : 'facet'}}
arg_shapes = {'material' : '1, 1', 'virtual' : (1, 'state'), 'state' : 1,
'parameter_u' : 'D'}
family_data_names = ['mtx_f', 'det_f']
function = staticmethod(terms.dw_volume_dot_scalar)
[docs]
def get_fargs(self, bulk, virtual, state, parameter_u,
mode=None, term_mode=None, diff_var=None, **kwargs):
vgp, _ = self.get_mapping(virtual)
vgs, _ = self.get_mapping(state)
vgu, _ = self.get_mapping(parameter_u)
name = parameter_u.name
fd = self.get_family_data(parameter_u, self.region, self.integral,
self.geometry_types[name],
self.arg_steps[name],
self.arg_derivatives[name])
coef = nm.divide(bulk, fd.det_f)
if mode == 'weak':
if diff_var is None:
val_qp = self.get(state, 'val')
fmode = 0
else:
val_qp = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return coef, val_qp, vgp, vgs, fmode
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))