Source code for sfepy.discrete.iga.iga

"""
Isogeometric analysis utilities.

Notes
-----
The functions :func:`compute_bezier_extraction_1d()` and
:func:`eval_nurbs_basis_tp()` implement the algorithms described in [1].

[1] Michael J. Borden, Michael A. Scott, John A. Evans, Thomas J. R. Hughes:
    Isogeometric finite element data structures based on Bezier extraction of
    NURBS, Institute for Computational Engineering and Sciences, The University
    of Texas at Austin, Austin, Texas, March 2010.
"""
from __future__ import absolute_import
import numpy as nm

from sfepy.base.base import assert_
from six.moves import range

def _get_knots_tuple(knots):
    if isinstance(knots, nm.ndarray) and (knots.ndim == 1):
        knots = (knots,)

    elif not isinstance(knots, tuple):
        raise ValueError('knots must be 1D array or a tuple of 1D arrays!')

    return knots

[docs] def get_raveled_index(indices, shape): """ Get a global raveled index corresponding to nD indices into an array of the given shape. """ return nm.ravel_multi_index(indices, shape)
[docs] def get_unraveled_indices(index, shape): """ Get nD indices into an array of the given shape corresponding to a global raveled index. """ return nm.unravel_index(index, shape)
[docs] def tensor_product(a, b): """ Compute tensor product of two 2D arrays with possibly different shapes. The result has the form:: c = [[a00 b, a01 b, ...], [a10 b, a11 b, ...], ... ... ] """ c = nm.empty((a.shape[0] * b.shape[0], a.shape[1] * b.shape[1]), dtype=b.dtype) n0 = b.shape[0] n1 = b.shape[1] for ir in range(a.shape[0]): for ic in range(a.shape[1]): c[n1 * ir : n1 * (ir + 1), n0 * ic : n0 * (ic + 1)] = a[ir, ic] * b return c
[docs] def compute_bezier_extraction_1d(knots, degree): """ Compute local (element) Bezier extraction operators for a 1D B-spline parametric domain. Parameters ---------- knots : array The knot vector. degree : int The curve degree. Returns ------- cs : array of 2D arrays (3D array) The element extraction operators. """ knots = nm.asarray(knots, dtype=nm.float64) n_knots = knots.shape[0] a = degree b = a + 1 # The first element extraction operator. cs = [nm.eye(degree + 1, degree + 1, dtype=nm.float64)] while (b + 1) < n_knots: # The current extraction operator. cc = cs[-1] # Multiplicity of the knot at location b. b0 = b while ((b + 1) < n_knots) and (knots[b] == knots[b + 1]): b += 1 mult = b - b0 + 1 # The next extraction operator. if (b + 1) < n_knots: cn = nm.eye(degree + 1, degree + 1, dtype=nm.float64) cs.append(cn) if mult < degree: alphas = nm.zeros(degree - mult, dtype=nm.float64) numer = knots[b] - knots[a] for ij in range(degree, mult, -1): alphas[ij - mult - 1] = numer / (knots[a + ij] - knots[a]) r = degree - mult for ij in range(0, r): save = r - ij - 1 s = mult + ij for ik in range(degree, s, -1): alpha = alphas[ik - s - 1] cc[:, ik] = (alpha * cc[:, ik] + (1.0 - alpha) * cc[:, ik - 1]) if (b + 1) < n_knots: # Update overlapping coefficients for the next operator. cn[save : ij + save + 2, save] = cc[degree - ij - 1: degree + 1, degree] if (b + 1) < n_knots: # The next knot vector interval. a = b b = b + 1 return nm.asarray(cs, dtype=nm.float64)
[docs] def compute_bezier_extraction(knots, degrees): """ Compute local (element) Bezier extraction operators for a nD B-spline parametric domain. Parameters ---------- knots : sequence of array or array The knot vectors. degrees : sequence of ints or int Polynomial degrees in each parametric dimension. Returns ------- cs : list of lists of 2D arrays The element extraction operators in each parametric dimension. """ if isinstance(degrees, int): degrees = [degrees] knots = _get_knots_tuple(knots) dim = len(knots) assert_(dim == len(degrees)) cs = [] for ii, knots1d in enumerate(knots): cs1d = compute_bezier_extraction_1d(knots1d, degrees[ii]) cs.append(cs1d) return cs
[docs] def combine_bezier_extraction(cs): """ For a nD B-spline parametric domain, combine the 1D element extraction operators in each parametric dimension into a single operator for each nD element. Parameters ---------- cs : list of lists of 2D arrays The element extraction operators in each parametric dimension. Returns ------- ccs : list of 2D arrays The combined element extraction operators. """ dim = len(cs) if dim == 3: c0, c1, c2 = cs[0], cs[1], cs[2] ncc = (len(c0), len(c1), len(c2)) ccs = [None] * nm.prod(ncc) for i0 in range(len(c0)): for i1 in range(len(c1)): for i2 in range(len(c2)): cc = tensor_product(c0[i0], tensor_product(c1[i1], c2[i2])) ii = get_raveled_index([i0, i1, i2], ncc) ccs[ii] = cc elif dim == 2: c0, c1 = cs[0], cs[1] ncc = (len(c0), len(c1)) ccs = [None] * nm.prod(ncc) for i0 in range(len(c0)): for i1 in range(len(c1)): cc = tensor_product(c0[i0], c1[i1]) ii = get_raveled_index([i0, i1], ncc) ccs[ii] = cc else: ccs = cs[0] return ccs
[docs] def create_connectivity_1d(n_el, knots, degree): """ Create connectivity arrays of 1D Bezier elements. Parameters ---------- n_el : int The number of elements. knots : array The knot vector. degree : int The basis degree. Returns ------- conn : array The connectivity of the global NURBS basis. bconn : array The connectivity of the Bezier basis. """ # Get multiplicities of NURBS knots. n_knots = len(knots) mul = [0] ii = degree + 1 while ii < (n_knots - degree - 1): i0 = ii while (ii < (n_knots - degree - 2)) and (knots[ii] == knots[ii + 1]): ii += 1 mul.append(ii - i0 + 1) ii += 1 mul = nm.array(mul)[:, None] aux1 = nm.arange(degree + 1)[None, :] conn = aux1 + nm.cumsum(mul, 0) # Bezier basis knots have multiplicity equal to degree. aux2 = nm.arange(n_el)[:, None] bconn = aux1 + degree * aux2 return conn.astype(nm.int32), bconn.astype(nm.int32)
[docs] def create_connectivity(n_els, knots, degrees): """ Create connectivity arrays of nD Bezier elements. Parameters ---------- n_els : sequence of ints The number of elements in each parametric dimension. knots : sequence of array or array The knot vectors. degrees : sequence of ints or int The basis degrees in each parametric dimension. Returns ------- conn : array The connectivity of the global NURBS basis. bconn : array The connectivity of the Bezier basis. """ if isinstance(degrees, int): degrees = [degrees] degrees = nm.asarray(degrees) knots = _get_knots_tuple(knots) dim = len(n_els) assert_(dim == len(degrees) == len(knots)) conns = [] bconns = [] n_gfuns = [] n_gbfuns = [] for ii, n_el in enumerate(n_els): conn1d, bconn1d = create_connectivity_1d(n_el, knots[ii], degrees[ii]) conns.append(conn1d) bconns.append(bconn1d) n_gfuns.append(conn1d.max() + 1) n_gbfuns.append(bconn1d.max() + 1) n_el = nm.prod(n_els) n_efuns = degrees + 1 n_efun = nm.prod(n_efuns) if dim == 3: def make_conn_3d(conns, n_gfuns): conn = nm.empty((n_el, n_efun), dtype=nm.int32) for ie0 in range(n_els[0]): c0 = conns[0][ie0] for ie1 in range(n_els[1]): c1 = conns[1][ie1] for ie2 in range(n_els[2]): c2 = conns[2][ie2] ie = get_raveled_index([ie0, ie1, ie2], n_els) for il0 in range(n_efuns[0]): cl0 = c0[il0] for il1 in range(n_efuns[1]): cl1 = c1[il1] for il2 in range(n_efuns[2]): cl2 = c2[il2] iloc = get_raveled_index([il0, il1, il2], n_efuns) ig = get_raveled_index([cl0, cl1, cl2], n_gfuns) conn[ie, iloc] = ig return conn conn = make_conn_3d(conns, n_gfuns) bconn = make_conn_3d(bconns, n_gbfuns) elif dim == 2: def make_conn_2d(conns, n_gfuns): conn = nm.empty((n_el, n_efun), dtype=nm.int32) for ie0 in range(n_els[0]): c0 = conns[0][ie0] for ie1 in range(n_els[1]): c1 = conns[1][ie1] ie = get_raveled_index([ie0, ie1], n_els) for il0 in range(n_efuns[0]): cl0 = c0[il0] for il1 in range(n_efuns[1]): cl1 = c1[il1] iloc = get_raveled_index([il0, il1], n_efuns) ig = get_raveled_index([cl0, cl1], n_gfuns) conn[ie, iloc] = ig return conn conn = make_conn_2d(conns, n_gfuns) bconn = make_conn_2d(bconns, n_gbfuns) else: conn = conns[0] bconn = bconns[0] return conn, bconn
[docs] def compute_bezier_control(control_points, weights, ccs, conn, bconn): """ Compute the control points and weights of the Bezier mesh. Parameters ---------- control_points : array The NURBS control points. weights : array The NURBS weights. ccs : list of 2D arrays The combined element extraction operators. conn : array The connectivity of the global NURBS basis. bconn : array The connectivity of the Bezier basis. Returns ------- bezier_control_points : array The control points of the Bezier mesh. bezier_weights : array The weights of the Bezier mesh. """ n_bpoints = bconn.max() + 1 dim = control_points.shape[1] bezier_control_points = nm.zeros((n_bpoints, dim), dtype=nm.float64) bezier_weights = nm.zeros(n_bpoints, dtype=nm.float64) for ie, ec in enumerate(conn): cc = ccs[ie] bec = bconn[ie] ew = weights[ec] ecp = control_points[ec] bew = nm.dot(cc.T, ew) becp = (1.0 / bew[:, None]) * nm.dot(cc.T, ew[:, None] * ecp) bezier_control_points[bec] = becp bezier_weights[bec] = bew return bezier_control_points, bezier_weights
[docs] def get_bezier_topology(bconn, degrees): """ Get a topology connectivity corresponding to the Bezier mesh connectivity. In the referenced Bezier control points the Bezier mesh is interpolatory. Parameters ---------- bconn : array The connectivity of the Bezier basis. degrees : sequence of ints or int The basis degrees in each parametric dimension. Returns ------- tconn : array The topology connectivity (corner nodes, or vertices, of Bezier elements) with vertex ordering suitable for a FE mesh. """ shape = nm.asarray(degrees) + 1 dim = len(shape) ii = nm.arange(bconn.shape[1]).reshape(shape) if dim == 3: corners = [ii[0, 0, 0], ii[-1, 0, 0], ii[-1, -1, 0], ii[0, -1, 0], ii[0, 0, -1], ii[-1, 0, -1], ii[-1, -1, -1], ii[0, -1, -1]] elif dim == 2: corners = [ii[0, 0], ii[-1, 0], ii[-1, -1], ii[0, -1]] else: corners = [ii[0], ii[-1]] tconn = bconn[:, corners] return tconn
[docs] def get_patch_box_regions(n_els, degrees): """ Get box regions of Bezier topological mesh in terms of element corner vertices of Bezier mesh. Parameters ---------- n_els : sequence of ints The number of elements in each parametric dimension. degrees : sequence of ints or int Polynomial degrees in each parametric dimension. Returns ------- regions : dict The Bezier mesh vertices of box regions. """ if isinstance(degrees, int): degrees = [degrees] degrees = nm.asarray(degrees) n_els = nm.asarray(n_els) dim = len(n_els) shape = n_els * degrees + 1 regions = {} if dim == 3: aux0 = nm.arange(0, shape[2], degrees[2], dtype=nm.uint32) aux1 = nm.arange(0, shape[2] * shape[1], shape[2] * degrees[1], dtype=nm.uint32) aux2 = nm.arange(0, shape[2] * shape[1] * shape[0], shape[2] * shape[1] * degrees[0], dtype=nm.uint32) aux01 = (aux0[None, :] + aux1[:, None]).ravel() aux02 = (aux0[None, :] + aux2[:, None]).ravel() aux12 = (aux1[None, :] + aux2[:, None]).ravel() regions.update({ 'xi00' : aux01, 'xi01' : aux01 + shape[2] * shape[1] * (shape[0] - 1), 'xi10' : aux02, 'xi11' : aux02 + shape[2] * (shape[1] - 1), 'xi20' : aux12, 'xi21' : aux12 + shape[2] - 1, }) elif dim == 2: aux0 = nm.arange(0, shape[1], degrees[1], dtype=nm.uint32) aux1 = nm.arange(0, shape[1] * shape[0], shape[1] * degrees[0], dtype=nm.uint32) regions.update({ 'xi00' : aux0, 'xi01' : aux0 + shape[1] * (shape[0] - 1), 'xi10' : aux1, 'xi11' : aux1 + shape[1] - 1, }) else: regions.update({ 'xi00' : nm.array([0], dtype=nm.uint32), 'xi01' : nm.array([shape[0] - 1], dtype=nm.uint32), }) return regions
[docs] def get_facet_axes(dim): """ For each reference Bezier element facet return the facet axes followed by the remaining (perpendicular) axis, as well as the remaining axis coordinate of the facet. Parameters ---------- dim : int The topological dimension. Returns ------- axes : array The axes of the reference element facets. coors : array The remaining coordinate of the reference element facets. """ if dim == 3: axes = [[1, 0, 2], [2, 1, 0], [0, 2, 1], [0, 1, 2], [1, 2, 0], [2, 0, 1]] coors = [0.0, 0.0, 0.0, 1.0, 1.0, 1.0] elif dim == 2: axes = [[0, 1], [1, 0], [0, 1], [1, 0]] coors = [0.0, 1.0, 1.0, 0.0] else: axes = [[0]] coors = None return nm.array(axes, dtype=nm.uint32), nm.array(coors, dtype=nm.float64)
[docs] def get_surface_degrees(degrees): """ Get degrees of the NURBS patch surfaces. Parameters ---------- degrees : sequence of ints or int Polynomial degrees in each parametric dimension. Returns ------- sdegrees : list of arrays The degrees of the patch surfaces, in the order of the reference Bezier element facets. """ if isinstance(degrees, int): degrees = [degrees] degrees = nm.asarray(degrees) dim = len(degrees) if dim == 3: sdegrees = [(degrees[0], degrees[1]), (degrees[1], degrees[2]), (degrees[0], degrees[2]), (degrees[0], degrees[1]), (degrees[1], degrees[2]), (degrees[0], degrees[2])] sdegrees = nm.array(sdegrees, dtype=nm.uint32) elif dim == 2: sdegrees = degrees[[0, 1, 0, 1]] else: sdegrees = None return sdegrees
[docs] def create_boundary_qp(coors, dim): """ Create boundary quadrature points from the surface quadrature points. Uses the Bezier element tensor product structure. Parameters ---------- coors : array, shape (n_qp, d) The coordinates of the surface quadrature points. dim : int The topological dimension. Returns ------- bcoors : array, shape (n_qp, d + 1) The coordinates of the boundary quadrature points. """ # Boundary QP - use tensor product structure. axes, acoors = get_facet_axes(dim) n_f = len(axes) bcoors = nm.empty((n_f, coors.shape[0], coors.shape[1] + 1), dtype=nm.float64) ii = nm.arange(bcoors.shape[1], dtype=nm.uint32) for ik in range(n_f): for ic in range(bcoors.shape[2] - 1): bcoors[ik, :, axes[ik, ic]] = coors[:, ic] bcoors[ik, ii, axes[ik, -1]] = acoors[ik] return bcoors
[docs] def get_bezier_element_entities(degrees): """ Get faces and edges of a Bezier mesh element in terms of indices into the element's connectivity (reference Bezier element entities). Parameters ---------- degrees : sequence of ints or int Polynomial degrees in each parametric dimension. Returns ------- faces : list of arrays The indices for each face or None if not 3D. edges : list of arrays The indices for each edge or None if not at least 2D. vertices : list of arrays The indices for each vertex. Notes ----- The ordering of faces and edges has to be the same as in :data:`sfepy.discrete.fem.geometry_element.geometry_data`. """ if isinstance(degrees, int): degrees = [degrees] degrees = nm.asarray(degrees) dim = len(degrees) shape = degrees + 1 n_dof = nm.prod(shape) aux = nm.arange(n_dof, dtype=nm.uint32).reshape(shape) if dim == 3: faces = [aux[:, :, 0], aux[0, :, :], aux[:, 0, :], aux[:, :, -1], aux[-1, :, :], aux[:, -1, :]] faces = [ii.ravel() for ii in faces] edges = [aux[:, 0, 0], aux[-1, :, 0], aux[:, -1, 0], aux[0, :, 0], aux[:, 0, -1], aux[-1, :, -1], aux[:, -1, -1], aux[0, :, -1], aux[0, 0, :], aux[0, -1, :], aux[-1, -1, :], aux[-1, 0, :]] vertices = [aux[0, 0, 0], aux[-1, 0, 0], aux[-1, -1, 0], aux[0, -1, 0], aux[0, 0, -1], aux[-1, 0, -1], aux[-1, -1, -1], aux[0, -1, -1]] vertices = [ii[None] for ii in vertices] elif dim == 2: faces = None edges = [aux[:, 0], aux[-1, :], aux[:, -1], aux[0, :]] vertices = [aux[0, 0], aux[-1, 0], aux[-1, -1], aux[0, -1]] vertices = [ii[None] for ii in vertices] else: faces, edges = None, None vertices = [aux[:1], aux[-1:]] return faces, edges, vertices
[docs] def eval_bernstein_basis(x, degree): """ Evaluate the Bernstein polynomial basis of the given `degree`, and its derivatives, in a point `x` in [0, 1]. Parameters ---------- x : float The point in [0, 1]. degree : int The basis degree. Returns ------- funs : array The `degree + 1` values of the Bernstein polynomial basis. ders : array The `degree + 1` values of the Bernstein polynomial basis derivatives. """ n_fun = degree + 1 funs = nm.zeros(n_fun, dtype=nm.float64) ders = nm.zeros(n_fun, dtype=nm.float64) funs[0] = 1.0 if degree == 0: return funs, ders for ip in range(1, n_fun - 1): prev = 0.0 for ifun in range(ip + 1): tmp = x * funs[ifun] funs[ifun] = (1.0 - x) * funs[ifun] + prev prev = tmp for ifun in range(n_fun): ders[ifun] = degree * (funs[ifun - 1] - funs[ifun]) prev = 0.0 for ifun in range(n_fun): tmp = x * funs[ifun] funs[ifun] = (1.0 - x) * funs[ifun] + prev prev = tmp return funs, ders
[docs] def eval_nurbs_basis_tp(qp, ie, control_points, weights, degrees, cs, conn): """ Evaluate the tensor-product NURBS shape functions in a quadrature point for a given Bezier element. Parameters ---------- qp : array The quadrature point coordinates with components in [0, 1] reference element domain. ie : int The Bezier element index. control_points : array The NURBS control points. weights : array The NURBS weights. degrees : sequence of ints or int The basis degrees in each parametric dimension. cs : list of lists of 2D arrays The element extraction operators in each parametric dimension. conn : array The connectivity of the global NURBS basis. Returns ------- R : array The NURBS shape functions. dR_dx : array The NURBS shape functions derivatives w.r.t. the physical coordinates. det : array The Jacobian of the mapping to the unit reference element. """ if isinstance(degrees, int): degrees = [degrees] degrees = nm.asarray(degrees) dim = len(degrees) assert_(dim == len(qp) == len(cs)) n_efuns = degrees + 1 n_efun = nm.prod(n_efuns) n_efuns_max = n_efuns.max() assert_(n_efun == conn.shape[1]) # Element connectivity. ec = conn[ie] # Element control points and weights. W = weights[ec] P = control_points[ec] # 1D Bernstein basis B, dB/dxi. B = nm.empty((dim, n_efuns_max), dtype=nm.float64) dB_dxi = nm.empty((dim, n_efuns_max), dtype=nm.float64) for ii in range(dim): (B[ii, :n_efuns[ii]], dB_dxi[ii, :n_efuns[ii]]) = eval_bernstein_basis(qp[ii], degrees[ii]) # 1D B-spline basis N = CB, dN/dxi = C dB/dxi. N = nm.empty((dim, n_efuns_max), dtype=nm.float64) dN_dxi = nm.empty((dim, n_efuns_max), dtype=nm.float64) n_els = [len(ii) for ii in cs] ic = get_unraveled_indices(ie, n_els) for ii in range(dim): C = cs[ii][ic[ii]] N[ii, :n_efuns[ii]] = nm.dot(C, B[ii, :n_efuns[ii]]) dN_dxi[ii, :n_efuns[ii]] = nm.dot(C, dB_dxi[ii, :n_efuns[ii]]) # Numerators and denominator for tensor-product NURBS basis R, dR/dxi. R = nm.empty(n_efun, dtype=nm.float64) dR_dxi = nm.empty((n_efun, dim), dtype=nm.float64) w = 0 # w_b dw_dxi = nm.zeros(dim, dtype=nm.float64) # dw_b/dxi a = 0 # Basis function index. if dim == 3: for i0 in range(n_efuns[0]): for i1 in range(n_efuns[1]): for i2 in range(n_efuns[2]): R[a] = N[0, i0] * N[1, i1] * N[2, i2] * W[a] w += R[a] dR_dxi[a, 0] = dN_dxi[0, i0] * N[1, i1] * N[2, i2] * W[a] dw_dxi[0] += dR_dxi[a, 0] dR_dxi[a, 1] = N[0, i0] * dN_dxi[1, i1] * N[2, i2] * W[a] dw_dxi[1] += dR_dxi[a, 1] dR_dxi[a, 2] = N[0, i0] * N[1, i1] * dN_dxi[2, i2] * W[a] dw_dxi[2] += dR_dxi[a, 2] a += 1 elif dim == 2: for i0 in range(n_efuns[0]): for i1 in range(n_efuns[1]): R[a] = N[0, i0] * N[1, i1] * W[a] w += R[a] dR_dxi[a, 0] = dN_dxi[0, i0] * N[1, i1] * W[a] dw_dxi[0] += dR_dxi[a, 0] dR_dxi[a, 1] = N[0, i0] * dN_dxi[1, i1] * W[a] dw_dxi[1] += dR_dxi[a, 1] a += 1 else: for i0 in range(n_efuns[0]): R[a] = N[0, i0] * W[a] w += R[a] dR_dxi[a, 0] = dN_dxi[0, i0] * W[a] dw_dxi[0] += dR_dxi[a, 0] a += 1 # Finish R <- R / w_b. R /= w # Finish dR/dxi. D == W C dB/dxi, dR/dxi = (D - R dw_b/dxi) / w_b. dR_dxi = (dR_dxi - R[:, None] * dw_dxi) / w # Mapping reference -> physical domain dxi/dx. # x = sum P_a R_a, dx/dxi = sum P_a dR_a/dxi, invert. dx_dxi = nm.dot(P.T, dR_dxi) det = nm.linalg.det(dx_dxi) dxi_dx = nm.linalg.inv(dx_dxi) # dR/dx. dR_dx = nm.dot(dR_dxi, dxi_dx) return R, dR_dx, det
[docs] def eval_mapping_data_in_qp(qps, control_points, weights, degrees, cs, conn, cells=None): """ Evaluate data required for the isogeometric domain reference mapping in the given quadrature points. The quadrature points are the same for all Bezier elements and should correspond to the Bernstein basis degree. Parameters ---------- qps : array The quadrature points coordinates with components in [0, 1] reference element domain. control_points : array The NURBS control points. weights : array The NURBS weights. degrees : sequence of ints or int The basis degrees in each parametric dimension. cs : list of lists of 2D arrays The element extraction operators in each parametric dimension. conn : array The connectivity of the global NURBS basis. cells : array, optional If given, use only the given Bezier elements. Returns ------- bfs : array The NURBS shape functions in the physical quadrature points of all elements. bfgs : array The NURBS shape functions derivatives w.r.t. the physical coordinates in the physical quadrature points of all elements. dets : array The Jacobians of the mapping to the unit reference element in the physical quadrature points of all elements. """ if cells is None: cells = nm.arange(conn.shape[0]) n_el = len(cells) n_qp = qps.shape[0] dim = control_points.shape[1] n_efuns = degrees + 1 n_efun = nm.prod(n_efuns) # Output Jacobians. dets = nm.empty((n_el, n_qp, 1, 1), dtype=nm.float64) # Output shape functions. bfs = nm.empty((n_el, n_qp, 1, n_efun), dtype=nm.float64) # Output gradients of shape functions. bfgs = nm.empty((n_el, n_qp, dim, n_efun), dtype=nm.float64) # Loop over elements. for iseq, ie in enumerate(cells): # Loop over quadrature points. for iqp, qp in enumerate(qps): bf, bfg, det = eval_nurbs_basis_tp(qp, ie, control_points, weights, degrees, cs, conn) bfs[iseq, iqp] = bf bfgs[iseq, iqp] = bfg.T dets[iseq, iqp] = det return bfs, bfgs, dets
[docs] def eval_variable_in_qp(variable, qps, control_points, weights, degrees, cs, conn, cells=None): """ Evaluate a field variable in the given quadrature points. The quadrature points are the same for all Bezier elements and should correspond to the Bernstein basis degree. The field variable is defined by its DOFs - the coefficients of the NURBS basis. Parameters ---------- variable : array The DOF values of the variable with n_c components, shape (:, n_c). qps : array The quadrature points coordinates with components in [0, 1] reference element domain. control_points : array The NURBS control points. weights : array The NURBS weights. degrees : sequence of ints or int The basis degrees in each parametric dimension. cs : list of lists of 2D arrays The element extraction operators in each parametric dimension. conn : array The connectivity of the global NURBS basis. cells : array, optional If given, use only the given Bezier elements. Returns ------- coors : array The physical coordinates of the quadrature points of all elements. vals : array The field variable values in the physical quadrature points. dets : array The Jacobians of the mapping to the unit reference element in the physical quadrature points. """ if cells is None: cells = nm.arange(conn.shape[0]) n_el = len(cells) n_qp = qps.shape[0] dim = control_points.shape[1] nc = variable.shape[1] # Output values of the variable. vals = nm.empty((n_el * n_qp, nc), dtype=nm.float64) # Output physical coordinates of QPs. coors = nm.empty((n_el * n_qp, dim), dtype=nm.float64) # Output Jacobians. dets = nm.empty((n_el * n_qp, 1), dtype=nm.float64) # Loop over elements. for iseq, ie in enumerate(cells): ec = conn[ie] vals_e = variable[ec] cps_e = control_points[ec] # Loop over quadrature points. for iqp, qp in enumerate(qps): ii = n_qp * iseq + iqp bf, bfg, det = eval_nurbs_basis_tp(qp, ie, control_points, weights, degrees, cs, conn) vals_qp = nm.dot(bf, vals_e) vals[ii, :] = vals_qp coors_qp = nm.dot(bf, cps_e) coors[ii, :] = coors_qp dets[ii] = det return coors, vals, dets